美國著作權局拒絕人工智慧創作品之著作權申請

  2022年2月14日,美國著作權局(US Copyright Office)所屬之著作權審查委員會(Copyright Review Board),做出一件人工智慧(AI)創作作品不得申請著作權登記之決定,並聲明人類作者是著作權保護的必要前提。

  本案申請人Stephen Thaler在2018年首次嘗試為AI「Creativity Machine」創作的藝術作品申請著作權登記,Stephen將Creativity Machine列為作者,並聲明其因擁有該AI而得透過美國著作權法第201條(b)項的受雇著作原則(work for hire)取得前述作品之所有權,且得為此作品申請著作權登記。然而,Stephen提出的申請沒有成功,著作權局認為依著作權法及相關判例,非出自於人類所作之作品不應受著作權保障,而本案AI之創作作品亦無人類的創意性投入或干預。在Stephen提出兩次複審後,著作權審查委員會在2022年做出機關最終決定,除重申僅人類之作品得受著作權保障以外,更進一步表示無權利能力的AI無法簽訂契約,故無受雇著作原則適用之可能。此外,著作權審查委員會亦指出受雇著作原則亦僅能表彰作品的所有權,並非作品是否得以受著作權保障之指標。

  Stephen Thaler長年來不斷為AI之創作品爭取法律保護,除上述著作權外,其亦將名為DABUS的AI列為專利發明人,並以此就DABUS之發明在多個國家申請專利,而澳洲聯邦法院在2021年7月做出全球首個認為AI可作為專利發明人的判決。

相關連結
相關附件
你可能會想參加
※ 美國著作權局拒絕人工智慧創作品之著作權申請, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8808&no=0&tp=1 (最後瀏覽日:2025/12/20)
引註此篇文章
你可能還會想看
FDA公布修訂行動醫療APP指導原則

  美國於2015年2月5日公布修訂之行動醫療應用程式指導原則(Mobile Medical Applications, Guidance for Industry and Food and Drug Administration Staff),取代原先在2013年9月公布之版本。本次的修訂主要是將美國2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備、及醫療影像傳輸設備指導原則(Medical Device Data Systems, Medical Image Storage Devices, and Medical Image Communications Devices, Guidance for Industry and Food and Drug Administration Staff)規範納入其中。   2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備指導原則,擬降低FDA的管理程度,採用風險性評估方式,針對部分醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備等三種屬於第一級低風險之醫療器材,得不受ㄧ般管制,例如不需要登記、上市後報告及品質系統法規遵守等。原先,美國於2011年先將醫療設備資訊系統從第三級之高風險醫療器材,降低為第一級低風險之醫療器材,但經過長期間的使用經驗後,FDA認為,此等醫療器材設備在健康照護中十分重要,但相對於其他醫療器材,風險則較低,因此,將放寬程序。   行動健康應用程式亦可能歸類為上述之醫療器材,因此,為與上述的指導原則相符合,對於行動健康應用程式的審查亦作部分放寬。例如,當應用程式與資療資訊系統結合,而成為應受規範之醫療器材時,原先之規定為應進入醫療器材之規範程序,但新修訂之指導原則,則再放寬。僅將涉及積極的病人監測或醫療器材數據分析時,才需要回歸醫療器材之審查方式,其他醫療資訊系統若僅為儲存、傳輸等功能,而非主要提供診斷、治療等功能時,則可以不受醫療器材之規範限制,因風險程度較低,因此改由FDA視個案審查即可。為鼓勵相關產業的發展,FDA將風險性低之醫裁降低管理程度,其後續發展值得觀察。

美國財政部發布「非銀行金融、金融科技和創新」之金融科技創新報告

  美國財政部於今(2018)年7月31日發布一份重要報告,呼籲對金融科技領域的創新要採取更靈活,更有利的監管方法。這份報告主題為「非銀行金融、金融科技和創新」,其內容提及加密貨幣和分散式帳本技術(Distributed Ledger Technologies,DLT),並指出該些技術正由金融穩定監督委員會(Financial Stability Oversight Council)的工作組來主導進行跨部門的研究。整體來說,該報告表明美國政府大力推動新興金融技術的發展,並使現有的監管框架現代化,主張更加精簡和適當的監督,以消除發展過程中的障礙。並對於可能阻礙金融科技發展的法規,提出合理化建議,包括協調各州間加密貨幣交易的資金移轉立法。   美國財政部提及金融服務業正在開發的一系列DLT應用程式,其優勢仍有高度不確定性,因而進一步倡導使用監理沙盒,並鼓勵創建實驗室、工作組、創新辦公室,和其他讓行業參與者直接接觸監管機構的管道。監管機構和創新者之間的共生關係,是支持美國經濟和保持全球競爭力所必需的。該報告最後結論提到美國必須與新興技術並肩一起進步,要以不限制創新的方式來適當調整原有的監管策略。美國監管機構必須比過去更加靈活地履行職責,不能給創新的發展帶來不必要的阻礙。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

談傳統民俗文化藝術之保護-兼論原住民族傳統智慧創作保護法草案

TOP