日本有關循環經濟新法規「塑膠資源循環促進法」將於2022年4月1日正式上路

  日本率先亞洲地區將於2022年4月1日實施「塑膠資源循環促進法」(プラスチック資源循環促進法),其係著重於產品設計階段至塑膠廢棄物排放、再利用等整個產品生命週期,來促進塑膠資源循環運用,主要措施內容包括:

①抑制塑膠廢棄物的排放、再資源化的環境設計(該法第1、2章)

②一次性利用塑膠產品的使用合理化(該法第3、4章)

③塑膠廢棄物的分類收集、自主回收、再資源化(該法第5、6、7章)

例如:

  設計、製造階段,有明示塑膠製產品設計指導方針,可透過減少塑膠用量來製作產品、調整尺寸和形狀方式,進行塑膠製產品之設計,並創建國家優秀設計認定制度,被國家認定之產品,可獲得政府優先購買,會提供消費者資訊使其更容易選擇環保產品。

  使用階段則要求企業經營者合理化提供免洗餐具等12種一次性塑膠製產品,其指導方針有是否採取有償方式提供、或是否有回饋措施予拒用免洗餐具之消費者等措施。

  塑膠廢棄物處理階段,係指針對排出塑膠廢棄物之企業經營者有責任妥善處理塑膠廢棄物等,倘企業經營者在其選擇之措施中有顯著不足情形,國家會以勸告、命令方式命其改善。

  回收、再利用階段,則是針對塑膠回收類型作最小限制,本制度設立了對該塑膠廢棄物進行再商品化的機制,重新修改分類規則,擴大塑膠資源的回收量,且針對回收自治體得補貼地方交付稅等部分費用,減輕其成本。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本有關循環經濟新法規「塑膠資源循環促進法」將於2022年4月1日正式上路, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8809&no=65&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
美國國會議員提出「網路盾」草案

  美國民主黨議員Ed Markey於2019年10月22日提出2019年「網路盾」草案(Cyber Shield Act of 2019),將設立委員會以建立美國物聯網網路安全標準。   雖由參議員MarkWarner所提出之2019年物聯網網路安全促進法(Internet of Things Cybersecurity Improvement Act of 2019)已通過並施行,惟該法僅適用於聯邦政府機構之設備採購。而「網路盾」草案之目的則係設立委員會並建立美國物聯網設備認證標章。依據該草案第3條,於該法通過並經總統簽署後90天內,美國國務卿必須建立網路盾諮詢委員會,該委員會之任務為擬定並建立美國網路盾標章。   另依據該草案第4條,物聯網產品之自願性認證程序與認證標章,內容必須符合特定產業之網路安全與資料保護標準。該標章應為數位標章,並標示於產品之上,且可劃分數個等級,以表彰其符合產業所需求之網路安全與資料安全等級。而針對標章之內容,該法要求美國國務卿於法律通過90天內應建立諮詢相關利益團體之程序,以確保其充分符合產業需求與利益。美國國務卿與各聯邦主管機關亦須合作以持續維護網路安全與資料安全標章之運作,且確保獲得該標章之產品,其資安與資料保護品質均優於未受認證之產品。

因應知識經濟社會 日本推動司法改革

  鑑於社會態度轉變與經濟面的需求,特別是隨著稅法和智慧財產權問題日益複雜,日本企業領袖紛紛延攬龐大的律師團,以借助其專長規劃並解決相關問題,以至法律專業人才需求更甚於以往。為此,日本改變壓低律師人數以及不鼓勵興訟的政策,大刀闊斧推動二次世界大戰以來最大的司法制度改革。本次司法制度大改革廣開職業考試大門,以便有足夠的律師、檢察官與法官,能在日益好訟的日本社會處理龐大民、刑事案件。   為填補需求缺口,日本政府決定將包括律師、檢察官和法官在內的法律專業人士的人數提高一倍以上,在 2018 年以前增至五萬人。同時,重大刑案將在 2009 年引進陪審團制度,以減輕法官負擔。在政府鼓勵下,日本第一所美式法學院於 2004 年成立,現在全國已有七十二所類似的法學院。過去日本大學法律系通常著重法律的學術或理論面,而新式法學院的重心則以實務訓練為主。這些法學院的畢業生不必考舊律師考試,只考專為他們設計的筆試。   我國法學教育改革研議已有幾十年,總統府人權諮詢小組在討論人權問題時,亦有專題涉及法律人養成與司法制度改革,因而研議全盤改革相關制度;行政院經建會在重要人才培育與運用的政策中,亦研擬自去( 94 )年開始推動法律專業學院制度。

歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求

  歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。   根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。   此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP