美國著作權局發布2022–2026策略計畫

  美國著作權局於2022年1月20日提出2022–2026五年策略計畫,以培養創造力及豐富文化為主軸,並闡明四個總體目標:著作權服務普及、提升效率、公正專業及增進資料使用。相關內容值得持續關注後續發展,說明如下:

一、著作權服務普及

  隨著數位網路技術興起,著作權局已展開如製作溝通素材、回答公眾問題、提供各式主題教育計畫等活動。後續將更專注於讓所有人盡可能了解其服務,如著作權賠償委員會(Copyright Claims Board, CCB)等,創造一個屬於大眾的著作權系統,並豐富公眾可使用創意內容的數量與多樣性。

二、提升效率

  著作權局進行包括建立企業著作權系統(Enterprise Copyright System, ECS)使其服務數位化、透過改進公共資訊聯絡中心、倉庫管理和財務系統以提升效率等工程。除持續更新ECS等系統外,未來將以用戶為中心來滿足著作權界的需求。

三、公正專業

  著作權局長期以來擔任國會的著作權法律顧問,處理相關立法、政策與實踐問題,並與其他行政機關、法院合作處理各式著作權疑義。除了持續透過立法推動、規則制定及研究來衡平著作權法及政策之外,著作權局將繼續在國際舞台上參與政策討論及提供教育,發揮積極作用,成為全球著作權界的資源。

四、增進資料使用

  在提供服務的過程中,著作權局蒐集了各類有價值的著作權相關資訊。此外,其亦網羅與內部運營績效、網路指標有關的其他資料。著作權局將加強資料的開發和使用,並以此作為決策的論證基礎、改進組織績效衡量標準,並使內、外部受眾更容易取得該等資料。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
※ 美國著作權局發布2022–2026策略計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8810&no=67&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
歐盟資料治理規則提出資料利他主義制度以利於公益目的之利用

  歐盟於2022年5月30日正式簽署通過「資料治理規則」,同時引入(EU)2018/1724修正案(REGULATION (EU) 2022/868 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on European data governance and amending Regulation (EU) 2018/1724),針對資料中介組織及資料利他主義組織業務啟動、營運等註冊程序進行補充。   資料治理規則也通稱為資料治理法(Data Governance Act, DGA)。DGA以建立一個可信賴的資料流通環境,達成資料的可利用性,以促進資料可用於各項研究以及創新的商品和服務為目標。   DGA中,特別引人注意的是第四章「資料利他主義」(Data altruism)的提出。依據資料治理規則第二條,所謂的資料利他主義係指資料主體基於自願且無償的情況下,同意他人得處理或利用其所持有的個人資料;或資料持有者在不尋求補償的情況下允許他人得利用其所有的非個人資料(non-personal data)。而這些資料利用的目的是以實現公共利益為目標,例如醫療保健、解決氣候變化、改善交通、促進公部門統計資料的產製與應用、改善公共服務、制定公共政策,或是科學研究等。   為利於資料利他主義的落實,歐盟希望有明確的的制度設計,藉以促成更多資料主體或資料持有人,在有足夠信任的基礎下,願意將資料無償提供並進行公益目的之利用,進而實現改善生活的目標。 因此,DGA中提出以下作法: 制訂「歐洲資料利他主義同意書」(European data altruism consent form):該法授權歐盟執委會應在諮詢過歐盟資料保護委員會(European Data Protection Board)以及考慮過DGA新設之歐盟資料創新委員會(European Data Innovation Board)的意見後,制定統一的「歐洲資料利他主義同意書表格」。以此增加資料主體對於資料授權的信任,提高資料主體同意將資料釋出與流通再利用之意願,並為授權或撤銷同意建立法遵明確性。 資料利他主義組織(data altruism organisations)管理機制: (1) 資料利他主義組織採自願註冊制度,而非許可制。在資料利他主義於符合形式登記要件後,並符合非營利、透明性以及滿足保障民眾權利等要求後,於其所屬會員國中註冊以成為公認(recognised)的資料利他主義組織。採自願註冊而非許可制的目的,是希望先以管制密度較低的方式,鼓勵更多組織投入資料利他主義的推動。 (2) 給予已註冊之資料利他主義組織識別標誌:透過相關的認可機制並授予識別標誌,藉此提高資料利他主義組織的可辨識度與信賴度,讓民眾在選擇合作的組織時有所依循。 (3) 透明度要求:為了增加資料主體或資料持有者對該組織的信任度,歐盟也將對資料利他主義組織進行一定程度的監督管理,例如年報編列與管理、是否以清晰易懂方式通知資料主體或資料持有者其資料被利用的目的、需保留資料利用之所有紀錄等。此外,也需要遵守DGA授權歐盟執委會未來訂定的相關補充規範。   整體而言,歐盟將資料利他主義的公益精神經由法制化的方式納入歐洲資料治理規則,透過歐洲資料利他主義同意書以及資料利他主義的相關管理規範,降低溝通成本以及建立信任基礎,以增加資料釋出的可能性,進而提升資料被利用的程度,最終達成改善人類福祉的目標。

何謂「ERIC」?

  為加強歐盟及各成員國的研究基礎設施合作,從發展政策方面,於2002年成立「歐洲研究基礎設施策略論壇」(European Strategy Forum on Research Infrastructures, ESFRI)協助各會員國統籌規劃RIs(Research Infrastructures, RIs)的發展藍圖。在法律層面,於2009年通過「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EU) No 723/2009 of 25 June 2009 on the Community legal framework for European Research Infrastructure Consortium (ERIC),使各歐盟會員國、夥伴國家、非夥伴國家之第三國家或跨政府國際組織等對於分散的RIs整合起來後,可向歐盟執委會提出申請,依該號規則取得法律人格,成立「歐盟研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),且可為權利得喪變更之主體,更可與他方簽訂契約或成為訴訟當事人,使其具有自我經營管理之能力。   截至目前為止(2015年9月),歐盟的RIs正式成立11個ERIC,並且透過國際間合作將RIs做更有效率之使用。國際上近年來創新研發競爭激烈,歐盟執委會為了持續推動建置世界級歐洲研究區域(European Research Area, ERA),無論在資金面、政策面及法律層面均有積極作為,在強化歐盟RIs同時促進國際科技研發合作,俾使歐盟於研發創新的領域保持世界領導之地位,歐盟未來仍會持續推動各個重要研發領域的ERIC,ERIC對於整合歐盟各國重大RIs負有重要使命。

發展階段支出可列為資產

  過去高科技企業或生化公司的研發專案,公司經常認為專案已成熟,可認列為無形資產,以分成幾年攤銷,不致影響損益;但會計師卻可能認為,其無技術可行性或者無使用和出售可能,仍主張認列為費用。   第三十七號會計公報 「無形資產的會計處理」 新近出爐,就無形資產清楚給予定義,並解釋如何進行會計處理與鑑價。其中最特別的是,第三十七號公報首次區分「研究」和「發展」階段的不同,發展階段有可能資本化。資本化最大的影響是,支出可以列為資產,不會影響損益,研究型企業的資產負債、損益表也將更為精準。   舉例來說,生化、製藥業者因研究期很長,所有研發期間的投入,過去都須列為費用,導致獲利被明顯稀釋;未來根據三十七號公報,企業專案計畫接近商品化的發展階段,就可以資本化,此時的損益表上費用項目,就不會那麼高, 因此,「發展」階段可列為資產,有助鼓勵科技業者增加研究發展經費的投入。   至於企業併購所產生的購買價格和被併公司淨值之間的溢價,過去通常以商譽處理,不過在 37 號公報上路後,會計師建議不應再把溢價直接當作商譽來處理,此乃因第 37 號公報所稱的無形資產,並不包含商譽,且必須具有「個別可辨認性」。因此,併購溢價應該區分為商譽和無形資產兩者,其後續評價對企業也較為有利。   此外會計業者也表示,促產條例中對研發投抵的認列,有可能受到三十七號公報的影響,需要做調整,這部分有待財政部進ㄧ步規範清楚。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP