日本公布「如何計算森林吸收的二氧化碳量」

  因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式:

  1. 森林一年吸收二氧化碳量的簡單計算方法

      每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數

  2. 林地復育增加森林吸收二氧化碳量的計算方法

      因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數

  3. 因種植森林土壤所維持之二氧化碳含量計算方法

      因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數

  此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。

相關連結
相關附件
※ 日本公布「如何計算森林吸收的二氧化碳量」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8812&no=0&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
替代能源有著落了?!

  國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。   生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯二甲酸( TPA )後,可做為保特瓶等塑膠容器。   除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約○.二至○.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議

  2018年1月加拿大參議院交通與通訊委員會(Standing Senate Committee on Transport and Communications)向加拿大交通部提出「駕駛改革:技術與自駕車的未來(Driving Change : Technology And The Future Of The Automated Vehicle)」報告。   報告指出加拿大面臨自駕車可能遭遇之挑戰,並列出提供交通部發展自駕車策略之政策建議。   其中包含:建議加拿大應成立跨部會單位以整合全國自駕車政策、並整合各地方政府與傳統領域政府透過發展地區模型策略;交通部並應與美國合作,來確保自駕車輛於兩國間運行無障礙;交通部應發展自駕聯網車輛設計的車輛安全指南,指南中應指明製造商於發展、測試與布建自駕車的車輛應有的設計需求,該指南並應持續隨科技發展而更新。   加拿大政府並應立法授權隱私委員會主動調查與促使製造者遵循「個人資訊保護與電子文件法(Personal Information Protection and Electronic Documents Act)」的權力,並應持續評估聯網車輛的隱私相關規範之需求。   並應整合利益關係人發展聯網車輛管制框架,特別應包括隱私保護;並應監督自駕與聯網車輛技術競爭之影響,以確保車輛出租公司與其他的延伸市場可持續取得相關營業所需資訊;並應注重加拿大自駕車之測試與發展等對於就業之影響等。

Skype多了測謊功能?

  以色列BATM公司研發出Skype整合性軟體-KishKish,未來將提供消費者以付費的方式使用測謊功能。此軟體係透過分析談話者聲音中的緊張程度,告知軟體使用者「對方是否說謊」。如此一來,使用者便可透過軟體分析出來的指示,而即時修正詢問的問題。據說,美軍已開始運用此套軟體!   雖然KishKish的使用如此便利,但是根據英國專家表示,網路使用者若不當使用KishKish,將可能違反「資料保護法」(Data Protection Act)而負擔民事責任,甚至還可能涉及「調查權規範法」(Regulation of Investigatory Powers Act,RIPA)將被處以兩年以上有期徒刑或科以罰金。   至今,Skype仍尚未公布其價格及發布日期。

TOP