美國總統簽署有關監管數位資產的行政命令

  美國總統於2022年3月9日簽署有關監管數位資產的行政命令(Executive Order on Ensuring Responsible Development of Digital Assets),有鑑於加密貨幣(cryptocurrencies)在內的數位資產於過去大幅成長,自5 年前的 140 億美元市值快速增長到去年11月的 3 兆美元市值,並且有100 多個國家正在探索央行數位貨幣(Central Bank Digital Currency, CBDC)。為使美國政府有整體性的政策以應對加密貨幣市場的風險與數位資產及其基礎技術的潛在利益,該行政命令以消費者與投資者保護、金融穩定、打擊非法融資、增進美國競爭力、普惠金融、負責任的創新為六大關鍵優先事項。

  為實現關鍵優先事項,行政命令中所採取的具體措施包含:(1)政府機關應合作來保護美國消費者與企業,以因應不斷成長的數位資產產業與金融市場變化; (2)鼓勵金融監管機構識別與降低數位資產可能帶來的系統性金融風險,制定適當的政策建議以解決監管漏洞;(3)與盟友合作打擊非法金融與國安風險,減輕非法使用數位資產所帶來非法金融與國家安全風險;(4)運用數位資產的技術,促進美國在技術與經濟競爭力上保持領先地位;(5)支持技術創新並確保負責任地開發與使用,同時優先考慮隱私、安全、打擊非法利用等面向;(6)鼓勵聯準會研究CBDC,評估所需的技術基礎設施與容量需求。

相關連結
※ 美國總統簽署有關監管數位資產的行政命令, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8815&no=67&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
科法觀點
你可能還會想看
美國科技公司指控六名中國人竊取科技公司營業秘密

  美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。   據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。   美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。

日本經產省公布零售電力業指引修正案,以配合電力市場新制度之實施

  日本經濟產業省2018年9月公布《零售電力業指引》 (電力の小売営業に関する指針,以下稱「本指引」)修正案。   本次主要修正方向為零售電力業者購買電力時若有以下情形,應如何於電源結構表上說明供用電戶參考:(1)跨區調度電力:同年10月開始,零售電力業者若需跨區調度電力,改由日本電力交易所使用「間接競拍」(間接オークション)分配電力容量。故本指引配合規定,原則上以跨區調度取得之電力歸類於電源結構表的「電力交易所」中;(2)使用非化石價值證書:本指引規定,若零售電力業者自日本電力交易所購得非化石價值證書,可於電源結構表中標示使用非化石價值證書之電力配比,並註明如:「本公司販售之受再生能源躉購費率制度(FIT)補助之電力,係使用再生能源限定之非化石價值證書,具有以再生能源發電之實質價值。」;(3)販售特定電源方案:若零售電力業者提供用電戶特定的電源方案,本指引建議業者在製作電源結構表時,應先扣除總電量中特定電源方案之電量後,再計算餘下電量及配比,並註明如:「本公司向部分用戶販售內含水力發電20%以上之特定電源方案,其他非以特定電源方案進行銷售的電源結構請參考圖表。」若未先扣除再計算,也應在表中註明總電量中內含特定電源方案銷售之電量數據。(4)標示電力產地:若零售電力業者以電力產地做為賣點,可依電力來源於電源結構表中標示「自產自消」或「○○地域產電力」。

美國國會提出法案,使儲能設備享有投資稅額抵減

  美國國會於2021年3月9日提出「2021年儲能稅制獎勵及設置法草案」(Energy Storage Tax Incentive and Deployment Act of 2021, H.R.1684),擬擴大投資稅額抵減制度(Investment Tax Credit)之適用範圍。有鑑於現行投資稅額抵減制度並不包含儲能設備,然儲能設備對於再生能源發展又具有重要地位,故為獎勵儲能設備之設置,同時輔助再生能源發展,美國國會遂提出前揭草案,並修正美國1986年國內稅收法(Internal Revenue Code of 1986, 26 U.S. Code)§48(a)(3)(A)(vii)以及§25D(a)規定,擬將投資稅額抵減制度擴張及於儲能設備,亦即,未來如草案通過後,不論是發電業者或用電戶只要有合乎規範設置儲能設備,即可適用投資稅額抵減制度,並依照其投資於儲能設備之額度抵減所得稅。   依照美國1986年國內稅收法,現行美國投資稅額抵減制度主要是依照發電業者或用電戶「開始設置再生能源發電設備之時點」以及「設置成本」給予不同程度之所得稅抵減,如發電業者或用電戶越早開始設置再生能源發電設備,發電業者或用電戶可申請抵減所得稅之額度則越高,最高可達該再生能源發電設備成本之30%;反之,如開始設置的時間越晚,則可申請抵減所得稅之額度則越低。舉例言之,如申請人於2020年1月1日以前開始設置再生能源發電設備,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度可達該再生能源發電設備成本之30%,反之,如為2021年間開始設置,而於2024年1月1日前將再生能源發電設備投入營運,此時可申請抵減所得稅之額度僅有該再生能源發電設備成本之22%。   依美國國家稅務局(Internal Revenue Service, IRS)「針對投資稅額抵減制度施工起點標準」行政函釋(Beginning of Construction for the Investment Tax Credit),有兩種判定再生能源發電設備有開始設置之標準,其一為「物理工作物標準」(Physical Work Test),其二為「5%成本支出標準」(Five Percent Safe Harbor),申請人只要符合任一標準,即可被認定有開始再生能源發電設備設置之行為。於「物理工作物標準」下,只要該再生能源發電設備之重要基礎零件已開始組裝,即可被認定為已經有再生能源發電設備設置的行為;於「5%成本支出標準」下,只要申請人已經支出該再生能源發電設備成本之5%,即可被認定有開始再生能源發電設備設置之行為。但不論以上開何種標準,申請人都必須有不中斷且持續進行設置之事實,始可被認定為其開始設置再生能源發電設備的時間點較早,而申請抵減較多之所得稅,否則即有可能被認定開始設置的時間點較晚,而僅得申請抵減較少之所得稅。

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP