俄羅斯聯邦政府於2022年3月7日發布第299號法令(Постановление Правительства Российской Федерации № 299,下稱本法令),規定於有國家利益考量之情況下,得不經授權利用「不友好國家」的專利權。而我國也在前述「不友好國家」名單之列。
具體而言,本法令之解釋脈絡應從俄羅斯民法(Гражданский кодекс Российской Федерации)第1360條談起,該條規定在確保國家安全或保護公民生命與健康之極端必要情況下,俄羅斯聯邦政府有權決定,未經專利權人同意,使用相關發明、新型和工業品外觀設計,惟需儘快通知專利權人,並支付相應之補償金。
2021年10月18日,俄羅斯聯邦政府按民法第1360條第2項規定,頒布第1767號法令(Постановление Правительства Российской Федерации № 1767)確定補償數額為受專利保護之商品與服務所產生實際收益之0.5%。
然而,因烏俄戰爭持續延燒致俄羅斯聯邦政府採取反西方制裁措施之故,其發布第299號法令,針對第1767號法令再次增修補償數額之認定方法,規定:「倘專利權人來自『不友好國家』,則俄羅斯實體或個人未經專利權人同意,使用相關發明、新型或工業設計進行生產、銷售商品、提供勞務及服務時,須向權利人支付權利金為前述活動所產生實際收益之0%」。
基此,第299號法令應限縮在有國家利益考量之情況下(如:與國家安全或保護俄羅斯公民的生命、健康相關),針對使用特定的專利或商品,可免支付專利強制授權的補償金。換言之,本法令不應解讀為,任何專利在俄羅斯都可恣意利用,而無需經權利人同意或支付適當補償。惟因無法預期未來俄羅斯聯邦政府對「不友好國家」會否有其他強制授權情事,故我國經濟部智慧財產局發函通知專利權人,應密切關注相關議題,並預作準備以降低風險。
本文為「經濟部產業技術司科技專案成果」
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
日本文部科學省發布2021年科學技術與創新白皮書,著眼於韌性社會願景與疫後對策的具體措施日本文部科學省於2021年6月8日公布「2021年科學技術與創新白皮書」(令和3年版科学技術・イノベーション白書),為文部省就政府所訂立之科技政策藍圖,所發布的年度報告書。本年度白皮書循往例,區分為第一部分與第二部分。第一部分著重同年3月發布之第6期科學技術與創新基本計畫(第6期科学技術・イノベーション基本計画)框架下,為達成Society 5.0之願景政府所規劃的一系列政策;第二部分則回顧去(2020)年,政府針對科技與創新創造所採取的各項對策。 本白皮書就韌性社會所需科研項目、強化研究能量的激勵措施等層面,提出以下具體方向: (1)推動社會數位化與零碳排放(脱炭素化) 為強化網路虛擬空間與現實社會間的資源共享與互動發展,虛擬空間之基礎技術方面,持續研發超級電腦、AI與量子電腦,利用所累積的資料運用於深度分析與模擬,並實現超高速計算與量子通訊。虛擬空間與現實社會結合之應用型技術研發方面,包含能輔助身體運作的外部機械、透過自駕車系統銜接高齡化社會交通需求、以及遠端遙控之機器人技術應用於高風險作業環境。推動零碳排放、強化防災能量等面向,則藉由綠色成長戰略、綠色創新基金等政策,發展核融合、次世代蓄電池、精準預測氣候變遷之系統等新興技術;運用AI模擬等強化地震與天災的預報精準度,提升社會應對大規模自然災害的韌性。 (2)「知識」的整合創造與利用,以用於解決各類社會議題 考量社會議題的解決,不僅在於前瞻性自然科學技術的研發,尚需同步理解人類社會的多樣性。同時,人文社會科學近年來,亦多有採用自然科學的研究方法。因之,白皮書主張兩方的跨域知識結合,應用上強調須以人為本來解決各類社會議題。 (3)強化基礎研究能量 應著手改善出於個人經濟因素,放棄申請博士後課程的現況,創造年輕研究者敢於投入自身有興趣且具挑戰性研究課題之環境。基此,白皮書提出設置10兆日圓規模的大學基金,提升約15,000名博士後課程學生的待遇,並推動「創造發展性研究支援事業」(創発的研究支援事業)措施,穩定提供10年期間的研究資金。 (4)COVID-19疫情對策 持續投入研發治療方法(如檢驗抗病毒藥物Favipiravir用於治療COVID-19的效果與安全性)、疫苗與相關醫療器材,並推動以遠距方式進行研究活動,導入機器人技術等來發展自動化實驗、於虛擬空間內進行實驗等;另一方面,有效的防疫對策(如避免人潮密集、密切接觸、密閉空間的「三密」),根基於COVID-19的最新科研成果,因此需讓科學性、客觀性資訊透過適切的管道(如日本科學未來館網站),以淺顯易懂的形式向大眾宣達。
食品標示 美國新制上路隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
南韓個人資料保護委員會宣布通過修訂個人資料保護法施行法2024年3月6日,南韓個資保護委員會(Personal Information Protection Commission, PIPC)宣布通過個人資料保護法施行法(Enforcement Decree of the Personal Information Protection Act, PIPA Enforcement Decree)修正案,並於2024年3月15日正式實行。 本次修法重點如下: 1.明訂個資主體可要求公開自動化決策過程之權利及應對不利結果時可採取之措施 針對使用AI等自動化系統處理個資並做出的自動化決策,個資主體(即,個人)有權要求解釋決策過程並進行審查,尤其當決策結果對個資主體權益有重大影響時(例如:不通過其社福補助申請),個資主體可拒絕自動化決策結果,並要求改為人為決策及告知重新決策結果。另為確保透明、公平,自動化決策依據的標準與程序亦須公開,並於必要時向公眾說明決策過程。 2.確立隱私長(Chief Privacy Officers, CPOs)的資格要求及適用範圍 為確保CPO能順利開展個資保護工作,要求處理大量或敏感個資機關之CPO至少具有4年個資、資安相關經驗,且個資經驗至少2年。適用機關包括:年營業額達1,500億韓元以上、處理超過100萬人個資或超過5萬人特種資料者;學生超過2萬人的大學;處理大量特種個資的教學醫院或大型私人醫院等;疾管局、社福、交通、環保等公共系統運營機構。 3.明訂評估公共機構個資保護效能之標準及程序 依據個資法第11-2條規定,PIPC每年需對公共機構(如:中央行政機關及其所屬機關、地方政府及總統令規定者)進行個資保護程度評估,而為使評估作業有所依循,本次新增評估標準及相關程序包括:政策和業務表現及其改進情形、管理體系適當性、保護個資措施及執行情形、防範個資侵害及確保安全性措施及執行情形等。 4.調整需要承擔損害賠償責任的適用範圍及門檻 為確保機關履行個資主體損害賠償責任,將需履行投保保險等義務之適用範圍由網路業者擴大至實體店面及公共機構等。同時,調整適用門檻,將年銷售額由5千萬韓元調整為10億韓元、個資主體數由1千人調整為1萬人,以減輕小型企業負擔。另亦明訂可豁免責任的對象包括:不符合CPO資格的公共機構,公益法人或非營利組織,及已委託給已投保保險之專業機構的小型企業。 PIPC另將公布一份指引草案,內容包括自動決策權利、CPO資格要求、公共機構個資保護評估標準、賠償責任保障制度等,並舉行說明會來收集回饋意見。