G20要求OECD(經合組織)儘速制訂加密資產申報綱要(Crypto-Asset Reporting Framework, CARF),以建立「加密資產資訊自動交換制度」,使一國稅務機關有權收集,並與他國稅務機關交換從事加密資產交易者的稅務資訊。故OECD於今(2022)年3月發布公開徵詢文件,並於5月23日召開公開諮詢會議,並期能於今年10月完成CARF之制訂。
蓋人手一機的時代,透過APP買賣虛擬通貨及NFT等加密資產已是滑指日常。因使用區塊鏈技術,去中心化的特性使得所有交易都不需要傳統金融機構的中介或干預,又因為區塊鏈是分散式帳本,因此每一筆交易進行紀錄的礦工幾乎都不同。換言之,加密資產的交易及紀錄都有秘密性,金融機構與國家機關難以查得,就算能查到交易紀錄,也無法查得買賣加密資產雙方的真實身份,因此衍生出投資加密資產如有獲利,如果沒有申報,反正國家也查不到,就不用繳稅的問題。
因此,首段所稱CARF,即為解決前段因區塊鏈技術所引起的稅務挑戰,惟這項全新的交換制度涉及了加密資產與跨國稅務等事務,有賴全球合作,茲事體大,雖然CARF與現在已經在全球實施的稅務資訊自動交換制度類似,但顯有不同。
加拿大交通部(Department of Transport Canada)於2019年1月發布「加拿大自駕系統安全評估(Safety Assessment for Automated Driving Systems in Canada)」文件,該文件將協助加拿大企業評估其發展高級(SAE第三級至第五級)自駕層級車輛之安全性,並可與美國相關政策進行整合。該文件指出,因相關技術尚在發展之中,不適合使用強制性規範進行管制,因此將利用引導性之政策措施來協助相關駕駛系統安全發展。加拿大交通部於文件中指出可用於評估目前自駕車輛研發成果之13種面向,並將其分類為三個領域: 自駕技術能力、設計與驗證:包含檢視車輛設計應屬何種自駕層級與使用目的、操作設計適用範圍、物件及事件偵測與反應、國際標準、測試與驗證等。 以使用者為核心之安全性:包含安全系統、人車界面與控制權的可取得性、駕駛/使用人能力與意識教育、撞擊或系統失靈時的運作等。 網路安全與資料管理:包含管理網路安全風險策略、售後車輛安全功能運作與更新、隱私與個資保障、車輛與政府分享之資訊等。 加拿大交通部鼓勵企業利用該文件提出安全評估報告並向公眾公開以增進消費者意識,另一方面,該安全評估報告內容也可協助加拿大政府發展相關安全政策與規範。
歐盟行動健康服務(mHealth)眾人引頸期盼的下一步歐盟於2015年5月9日在拉脫維亞的里加舉辦了為期一週之「eHealth Week」研討會,包含由歐盟輪值理事會主辦之高階eHealth會議,以及由歐洲HIMSS (Healthcare Information and Management Systems Society)主辦之「WoHIT (World of Health IT Conference & Exhibition)」兩大活動,而2015歐洲mHealth高峰會為其中備受矚目的重要主題活動。該高峰會以推動歐洲mHealth進程之執行為領導思考核心,相關利害關係者(包括公部門、ICT產業、健康保健專業學者)於5月12日以mHealth綠皮書公眾諮詢結果為基礎,針對歐盟目前執行中以及未來可能採取之政策為討論,主要議題包括:1.所蒐集資料之隱私與安全保護。2.生活康樂型apps產品之安全性與品質管控。3.網路經營者對於mHealth市場之進入障礙。 針對資料之隱私與安全保護議題,公眾諮詢結果顯示,關鍵問題在於mHealth apps蒐集使用者資料是否有足夠的隱私與安全保障措施?與會者並認為此問題在資料的第三人再利用情形尤為重要。對此歐盟執委會表示將展開就mHealth apps訂定以產業為主導、範圍涵蓋資料隱私與安全性之行為守則,以建立使用者對mHealth apps之信任感,並提升app開發者對歐盟資料保護法規之遵法意識。 針對生活康樂型apps(包括健康照護相關app)產品之安全性與品質管控議題,透過與會者現場意見調查顯示,認為健康照護相關apps之安全性、品質與可靠性由於欠缺臨床佐證,導致就apps的目的與功效會有錯誤的宣示。值得注意的是,制定法規控管並非多數意見,大多數與會者認為以訂定指引或標準的方式,作為生活與康樂型apps的安全性與品質之依循方針較為妥適。對此歐盟執委會表示會持續跟進此議題並與相關利害關係者討論下一步之行動。 針對網路經營者進入歐盟mHealth市場議題,與會者認為網路經營者將面臨複雜的進入障礙,諸如歐盟相關法規架構的不清與零散、mHealth方案與設備的互通性與開放標準的欠缺等。歐盟執委會明確表示,支持網路經營者進入mHealth市場,目前歐盟正在進行的「Startup Europe」等相關倡議措施,即是以強化網路及資通訊業者商業環境為目的,提供網路經營者法規諮詢、投資媒合、商業模式育成等協助,以降低網路經營者所面對之市場進入門檻並有機會展現其新創能量。
美國國會通過700MHz D區段頻譜之規範為實施公共安全網路計畫,美國國會在2012年二月通過「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012),將700MHz頻段中既有存在之公共安全寬帶頻譜(763-769 MHz/793-799 MHz)與相鄰的D block的頻段(758-763MHz與788-793MHz)規劃成 「互通公共安全寬頻網路」(interopertable public safety broadband network),進行頻譜拍賣。 雖FCC經本法案授權執行D Block頻段的拍賣,但也限縮其職權規定FCC不得限制任何特定業者參與競標。針對FCC職權受到限制,業者認為可避免FCC在拍賣期間逕自訂定特別規則之情形。但法案仍保留FCC執行「普遍適用性的規定」(rules of general applicability)之權利,以頻譜聚合(spectrum aggregation)的規定促進市場競爭。對此,主導業者擔心FCC可能藉採取「頻譜上限」 (spectrum cap)的管制手段來限制其獲得大量頻譜的機會。 另外,面對全國性公共安全寬頻網路部署之需要,國會將授權行政部門建立「緊急救難管理局」(First Network Authority, FirstNet)來進行整體網路之開發規劃。在FirstNet尚未成立之前,FCC將暫時承擔此一過渡期間管理全國公共安全寬頻網路之責任。但FirstNet在未來是否能依照國會所期待順利掌管整體公共安全寬頻網路之運作,並達成建構一跨機關、部會以及區域的無縫互通寬頻網路平台(a nationwide interoperable public safety broadband network)之期望,FCC認為該局所任命之委員會委員所具備之專業度,以及各聯邦機構是否充分的支持將是成功之關鍵。
初探物聯網的資通安全與法制政策趨勢初探物聯網的資通安全與法制政策趨勢 資訊工業策進會科技法律研究所 2021年03月25日 壹、事件摘要 在5G網路技術下,物聯網(Internet of Things, IoT)的智慧應用正逐步滲入各場域,如智慧家庭、車聯網、智慧工廠及智慧醫療等。惟傳統的資安防護已不足以因應萬物聯網的技術發展,需要擴大供應鏈安全,以避免成為駭客的突破口[1]。自2019年5月「布拉格提案[2]」(Prague Proposal)提出後,美國、歐盟皆有相關法制政策,試圖建立各類資通訊設備、系統與服務之安全要求,以強化物聯網及相關供應鏈之資安防護。是以,本文觀測近年來美國及歐盟主要的物聯網安全法制政策,以供我國借鏡。 貳、重點說明 一、美國物聯網安全法制政策 (一)核心網路與機敏性設備之高度管制 1.潔淨網路計畫 基於資訊安全及民眾隱私之考量,美國政府於2020年4月提出「5G潔淨路徑倡議[3]」(5G Clean Path initiative),並區分成五大構面,包括:潔淨電信(Clean Carrier)、潔淨商店(Clean Store)、潔淨APPs(Clean Apps)、潔淨雲(Clean Cloud)及潔淨電纜(Clean Cable);上述構面涵蓋之業者只可與受信賴的供應鏈合作,其可信賴的標準包括:設備供應商設籍國的政治與治理、設備供應商之商業行為、(高)風險供應商網路安全風險緩和標準,以及提升供應商信賴度之政府作為[4]。 2.政府部門之物聯網安全 美國於2020年12月通過《物聯網網路安全法[5]》(IoT Cybersecurity Improvement Act of 2020),旨在提升聯邦政府購買和使用物聯網設備的安全性要求,進而鼓勵供應商從設計上導入安全防範意識。本法施行後,美國聯邦政府機關僅能採購和使用符合最低安全標準的設備,將間接影響欲承接政府物聯網訂單之民間業者及產業標準[6]。 另外,美國國防部亦推行「網路安全成熟度模型認證[7]」(Cybersecurity Maturity Model Certification, CMMC),用以確保國防工程之承包商具備適當的資訊安全水平,確保政府敏感文件(未達機密性標準)受到妥適保護。透過強制性認證,以查核民間承包商是否擁有適當的網路安全控制措施,消除供應鏈中的網路漏洞,保護承包商所持有的敏感資訊。 (二)物聯網安全標準與驗證 有鑑於產業界亟需物聯網產品之安全標準供參考,美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)提出「物聯網網路安全計畫」,並提出各項標準指南,如IR 8228:管理物聯網資安及隱私風險、IR 8259(草案):確保物聯網裝置之核心資安基準等。 此外,美國參議院民主黨議員Ed Markey亦曾提出「網路盾」草案[8](Cyber Shield Act of 2019),欲建立美國物聯網設備驗證標章(又稱網路盾標章),作為物聯網產品之自願性驗證標章,表彰該產品符合特定產業之資訊安全與資料保護標準。 二、歐盟物聯網安全法制政策 (一)核心網路安全建議與風險評估 歐盟執委會於2019年3月26日提出「5G網路資通安全建議[9] 」,認為各會員國應評鑑5G網路資通安全之潛在風險,並採取必要安全措施。又在嗣後提出之「5G網路安全整合風險評估報告[10]」中提及,5G網路的技術漏洞可能來自軟體、硬體或安全流程中的潛在缺陷所導致。雖然現行3G、4G的基礎架構仍有許多漏洞,並非5G網路所特有,但隨著技術的複雜性提升、以及經濟及社會對於網路之依賴日益加深,必須特別關注。同時,對供應商的依賴,可能會擴大攻擊表面,也讓個別供應商風險評估變得特別重要,包含供應商與第三國政府關係密切、供應商之產品製造可能會受到第三國政府施壓。 是故,各會員國應加強對電信營運商及其供應鏈的安全要求,包括評估供應商的背景、管控高風險供應商的裝置、減少對單一供應商之依賴性(多元化分散風險)等。其次,機敏性基礎設施禁止高風險供應商的參與。 (二)資通安全驗證制度 歐盟2019年6月27日生效之《網路安全法[11]》(Cybersecurity Act),責成歐盟網路與資訊安全局(European Union Agency for Cybersecurity, ENISA)協助建立資通訊產品、服務或流程之資通安全驗證制度,確保資通訊產品、服務或流程,符合對應的安全要求事項,包含:具備一定的安全功能,且經評估能減少資通安全事件及網路攻擊風險。原則上,取得資安驗證之產品、服務及流程可通用於歐盟各會員國,將有助於供應商跨境營運,同時能協助消費者識別產品或服務的安全性。目前此驗證制度為自願性,即供應商可以自行決定是否對將其產品送交驗證。 參、事件評析 我國在「資安即國安」之大架構下,行政院資通安全處於2020年底提出之國家資通安全發展方案(110年至113年)草案[12],除了持續強化國家資安防禦外,對於物聯網應用安全亦多有關注,其間,策略四針對物聯網應用之安全,將輔導企業強化數位轉型之資安防護能量,並強化供應鏈安全管理,包括委外供應鏈風險管理及資通訊晶片產品安全性。 若進一步參考美國與歐盟的作法,我國後續法制政策,或可區分兩大性質主體,採取不同管制密度,一主體為受資安法規管等高度資安需求對象,包括公務機關及八大領域關鍵基礎設施之業者與其供應鏈,其必須遵守既有資安法課予之高規格的安全標準,未來宜完善資通設備使用規範,包括:明確設備禁用之法規(黑名單)、高風險設備緩解與准用機制(白名單)。 另一主體則為非資安法管制對象,亦即一般性產品及服務,目前可採軟性方式督促業者及消費者對於資通設備安全的重視,是以法制政策推行重點包括:發展一般性產品及服務的自我驗證、推動建構跨業安全標準與稽核制度,以及鼓勵聯網設備進行資安驗證與宣告。 [1]經濟部工業局,〈物聯網資安三部曲:資安團隊+設備安全+供應鏈安全〉,2020/08/31,https://www.acw.org.tw/News/Detail.aspx?id=1149 (最後瀏覽日:2020/12/06)。 [2]2019年5月3日全球32個國家的政府官員包括歐盟、北大西洋公約組織 (North Atlantic Treaty Organization, NATO)的代表,出席由捷克主辦的布拉格5G 安全會議 (Prague 5G Security Conference),商討對5G通訊供應安全問題。本會議結論,即「布拉格提案」,建構出網路安全框架,強調5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,為確保5G基礎建設的供應鏈安全。是以,具體施行應從政策、技術、經濟、安全性、隱私及韌性(Security, Privacy, and Resilience)之四大構面著手。Available at GOVERNMENT OF THE CZECH REPUBLIC, The Prague Proposals, https://www.vlada.cz/en/media-centrum/aktualne/prague-5g-security-conference-announced-series-of-recommendations-the-prague-proposals-173422/ (last visited Jan. 22, 2021). [3]The Clean Network, U.S Department of State, https://2017-2021.state.gov/the-clean-network/index.html (last visited on Apr. 09, 2021);The Tide Is Turning Toward Trusted 5G Vendors, U.S Department of State, Jun. 24, 2020, https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html (last visited Apr. 09, 2021). [4]CSIS Working Group on Trust and Security in 5G Networks, Criteria for Security and Trust in Telecommunications Networks and Services (2020), https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/200511_Lewis_5G_v3.pdf (last visited Nov. 09, 2020). [5]H.R. 1668: IoT Cybersecurity Improvement Act of 2020, https://www.govtrack.us/congress/bills/116/hr1668 (last visited Mar. 14, 2021). [6]孫敏超,〈美國於2020年12月4日正式施行聯邦《物聯網網路安全法》〉,2020/12,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8583 (最後瀏覽日:2021/02/19)。 [7]U.S. DEPARTMENT OF DEFENSE, Cybersecurity Maturity Model Certification, https://www.acq.osd.mil/cmmc/draft.html (last visited Nov. 09, 2020). [8]H.R.4792 - Cyber Shield Act of 2019, CONGRESS.GOV, https://www.congress.gov/bill/116th-congress/house-bill/4792/text (last visited Feb. 19, 2021). [9]COMMISSION RECOMMENDATION Cybersecurity of 5G networks, Mar. 26, 2019, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019H0534&from=GA (last visited Feb. 18, 2021). [10]European Commission, Member States publish a report on EU coordinated risk assessment of 5G networks security, Oct. 09, 2019, https://ec.europa.eu/commission/presscorner/detail/en/IP_19_6049 (last visited Feb. 18, 2021). [11]Regulation (EU) 2019/881 of the European Parliament and of the Council of 17 April 2019 on ENISA and on Information and Communications Technology Cybersecurity Certification and Repealing Regulation (EU) No 526/2013 (Cybersecurity Act), Council Regulation 2019/881, 2019 O.J. (L151) 15. [12]行政院資通安全處,〈國家資通安全發展方案(110年至113年)草案〉,2020/12,https://download.nccst.nat.gov.tw/attachfilehandout/%E8%AD%B0%E9%A1%8C%E4%BA%8C%EF%BC%9A%E7%AC%AC%E5%85%AD%E6%9C%9F%E5%9C%8B%E5%AE%B6%E8%B3%87%E9%80%9A%E5%AE%89%E5%85%A8%E7%99%BC%E5%B1%95%E6%96%B9%E6%A1%88(%E8%8D%89%E6%A1%88)V3.0_1091128.pdf (最後瀏覽日:2021/04/09)。