歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。
在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。
該工具得以讓歐盟執委會:
一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量
二、預測至2030年的資料流出
三、分析各產業、公司規模和雲端服務類型的資料流量
該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。
作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。
應中國鋼鐵工業協會(以寶山鋼鐵為首)之請,日本鋼鐵聯盟擬提供中國削減溫室氣體的環保技術。中國雖不在京都議定書約束的國家之列,急遽的經濟成長所造成的空氣污染已帶來嚴重的環境問題,日本鐵鋼聯盟於24日的委員會上正式決定技術援助的計劃,近期內將與中國討論相關細節。 日本鋼鐵業界自1990年度起,平均每年投注1200億日圓開發該產業的環保技術,目前業界「回收熔爐熱能轉供發電等能源節約技術」已經領先全球。日本鋼鐵業界2003年度換算成二氧化碳的溫室氣體排放量雖然已較1990年度減少6.4%,仍然未能達到京都議定書中要求減量10%的目標。 利用京都議定書的「彈性機制」,業界也可藉由跨國的技術援助,將國外減少的溫室氣體額度直接計入本國的額度之內。目前為止由日本政府核可的「彈性機制」計劃共15件,今年一月甫通過鹿島建設公司將馬來西亞廢棄物處理場的沼氣轉為電能的計劃,除此之外,東京電力公司和住友商事都分別在智利和印度有相關的環保計劃。
美國參議院通過「寬頻資料促進法」2008年10月,美國參議院通過「寬頻資料促進法」(Broadband Data Improvement Act),由總統簽署後施行。此新法賦予機關提升寬頻有關資料正確性的義務,以精確的資料作為相關政策制定時之衡量基準。美國政府認知,必須架構最完善的寬頻網路基礎,方能保持美國在科技領域的世界領先地位,因此聯邦政府有責任持續拓展寬頻接取網絡,並著手佈建次世代寬頻技術。而此前提,在於取得精確資料供後續施政依循。 以往美國聯邦通訊委員會(FCC)蒐集寬頻相關資料的方式,常被批評不合時宜,2008年3月FCC主動改善其蒐集資料的方式,要求寬頻業者必須透過地域性人口調查方式,提供使用者人數、速度、及技術類型等資料。此新法更要求FCC表列出欠缺寬頻設施的地區,兼調查該等地區人口及收入水準,而改善寬頻接取的情形,為加速佈建寬頻環境的第一步。 除此以外,新法的要求尚包括:1、美國商業部及其他機關應促進所蒐集相關資料的正確性,以擬定較妥適政策來提升寬頻技術架構;2、FCC針對寬頻佈建展開年度例行調查,以五碼郵遞區為一地理單位,列出尚未有寬頻的地區。並依據未有寬頻服務地域的人口數據,劃定可提供最多連線且傳輸高畫質影像的寬頻服務層級。此外,研究其他25個國家與美國寬頻服務的異同點;3、美國國勢調查局(Census Bureau)應持續調查社區居民是否擁有電腦,採取撥接或寬頻連線;4、設置補助金來促進網路普及。 惟有評論家指出,該法雖立意甚佳,但直至下個會計年度通過配套法案前,政府根本沒有足夠預算可執行此法律,該法可能只是政策測溫,並無太大實質效益。
中國大陸國務院印發關於實施《促進科技成果轉化法》之規定中國大陸於2015年8月29日修改了其《促進科技成果轉化法》,為了該法的實施,中國大陸國務院於今年2月17日的常務會議中,即發表了其對於鼓勵研究機構及大專院校之科技研發成果運用的相關措施;而針對這些措施,中國大陸國務院於同月26日制定了相關的具體規定,並在3月2日時發布,並行文於各相關機關。 該規定分作16點,主要分三個大方向,包括促進研究機構及大專院校的科技研發成果轉移於民間企業、鼓勵科技研發人員發展創新技術以及創業活動,與科技研發環境的營造等等。 具體而言,其主要措施包括允許研發機構得自主決定其科技研發成果的運用,原則上不需要向政府申請核准或報備、其運用後的收入不需繳交國庫,得全部留於研發機構內,用於對研究人員之獎勵及機構內科技研發之用、其並對該收入用於對研究人員獎勵之比例下限作出明文規定、允許國立研發機構及大專院校之研究人員在一定條件下得保留原職位在一定期間內至民間企業兼職,或進行創業活動,以從事科技研發成果的運用,以及對研發機構的考核標準應納入對機構之科技研發成果及運用的評鑑等等。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。