歐盟於2022年5月30日正式簽署通過「資料治理規則」,同時引入(EU)2018/1724修正案(REGULATION (EU) 2022/868 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on European data governance and amending Regulation (EU) 2018/1724),針對資料中介組織及資料利他主義組織業務啟動、營運等註冊程序進行補充。
資料治理規則也通稱為資料治理法(Data Governance Act, DGA)。DGA以建立一個可信賴的資料流通環境,達成資料的可利用性,以促進資料可用於各項研究以及創新的商品和服務為目標。
DGA中,特別引人注意的是第四章「資料利他主義」(Data altruism)的提出。依據資料治理規則第二條,所謂的資料利他主義係指資料主體基於自願且無償的情況下,同意他人得處理或利用其所持有的個人資料;或資料持有者在不尋求補償的情況下允許他人得利用其所有的非個人資料(non-personal data)。而這些資料利用的目的是以實現公共利益為目標,例如醫療保健、解決氣候變化、改善交通、促進公部門統計資料的產製與應用、改善公共服務、制定公共政策,或是科學研究等。
為利於資料利他主義的落實,歐盟希望有明確的的制度設計,藉以促成更多資料主體或資料持有人,在有足夠信任的基礎下,願意將資料無償提供並進行公益目的之利用,進而實現改善生活的目標。 因此,DGA中提出以下作法:
(1) 資料利他主義組織採自願註冊制度,而非許可制。在資料利他主義於符合形式登記要件後,並符合非營利、透明性以及滿足保障民眾權利等要求後,於其所屬會員國中註冊以成為公認(recognised)的資料利他主義組織。採自願註冊而非許可制的目的,是希望先以管制密度較低的方式,鼓勵更多組織投入資料利他主義的推動。
(2) 給予已註冊之資料利他主義組織識別標誌:透過相關的認可機制並授予識別標誌,藉此提高資料利他主義組織的可辨識度與信賴度,讓民眾在選擇合作的組織時有所依循。
(3) 透明度要求:為了增加資料主體或資料持有者對該組織的信任度,歐盟也將對資料利他主義組織進行一定程度的監督管理,例如年報編列與管理、是否以清晰易懂方式通知資料主體或資料持有者其資料被利用的目的、需保留資料利用之所有紀錄等。此外,也需要遵守DGA授權歐盟執委會未來訂定的相關補充規範。
整體而言,歐盟將資料利他主義的公益精神經由法制化的方式納入歐洲資料治理規則,透過歐洲資料利他主義同意書以及資料利他主義的相關管理規範,降低溝通成本以及建立信任基礎,以增加資料釋出的可能性,進而提升資料被利用的程度,最終達成改善人類福祉的目標。
為降低應用程式(App)用戶接觸有害內容的風險,新加坡資通訊媒體發展管理局(Infocomm Media Development Authority,IMDA)發布《應用程式分發服務安全準則》(Code of Practice for Online Safety for App Distribution Services),要求應用程式分發服務(App Distribution Services,ADSs)採取必要防護措施,並導入年齡驗證機制,以進一步強化兒童保護。該準則將於 2025 年 3 月 31 日 生效。 本次IMDA依據《廣播法》(Broadcasting Act)第45L條所發布之《應用程式分發服務安全準則》,係為進一步強化對App用戶的保護。ADSs作為數位裝置存取應用程式的主要入口,是許多網路內容(例如線上遊戲)的上架平台,當用戶透過 ADSs下載App的比例提高,其接觸不當內容的風險亦增加。因此,新加坡要求指定業者建立安全措施,以降低用戶接觸不當內容的風險。被指定業者包括:Apple App Store、Google Play Store、Huawei AppGallery、Microsoft Store及Samsung Galaxy Store等。該準則亦要求ADSs業者建立年齡驗證機制,訂定年齡分級標準並限制兒童存取及下載不適齡的App,同時強化家長控制功能。這一措施讓新加坡成為全球首批強制推動年齡驗證的國家或地區之一,其他國家包括澳洲、歐盟、英國及美國。IMDA 亦將持續與ADSs 業者溝通,確保其有效落實年齡驗證機制。 早在2023年1月,新加坡已於《廣播法》中將線上通訊服務納入規範,政府可要求業者封鎖惡性內容(egregious content),確保網路環境安全並保護兒童免受不當內容影響。此外,依據《網路安全準則》(Code of Practice for Online Safety),政府可要求指定社群媒體服務業者(如Facebook、Instagram、TikTok、Twitter與YouTube等)降低用戶接觸有害內容的風險。 為因應日益增加的有害線上內容,新加坡未來將持續與相關政府機構、產業及社群合作,推動適當的監管措施與公共教育,以確保新加坡用戶免受線上風險侵害。
中國大陸國家互聯網信息辦公室、國家市場監督管理總局聯合發布《個人信息出境認證辦法》中國大陸國家互聯網信息辦公室、國家市場監督管理總局於2025年10月17日聯合發布《個人信息出境認證辦法(下稱認證辦法)》,並將於2026年1月1日施行。中國大陸所稱之認證即為臺灣所稱之驗證,屬兩岸詞語使用之差異,容易產生混淆誤認先予敘明,下將以臺灣慣用之驗證一詞說明。 依照《中華人民共和國個人信息保護法》第38條須向境外提供個人資料方法有四種:分別為1.透過國家網信部門組織的安全評估、2.經專業機構進行個人資料保護驗證、3.依照國家網信部門制定的標準化契約與境外接受者訂定契約,以約定雙方之權利義務、4.法律、行政法規、國家網信部門所規定之其他條件。而認證辦法係依據第二種方法所訂,主要規範:1.處理者資格限制、2.傳輸資料數量、3.影響評估內容、4.驗證機構申請資料與報告義務、5.對驗證機構之監督。 處理者資格限制與傳輸資料數量方面,認證辦法規定向境外提供個人資料:1.不可為關鍵信息基礎設施營運者、2.向境外提供的個人資料須為10萬人以上未滿100萬人之個人資料或未滿1萬人之敏感個人資料(須注意,中國大陸之敏感個人資料包含:生物識別、宗教信仰、特定身分、醫療健康、金融帳戶、行蹤軌跡等資料,以及不滿14週歲未成年人的個人資料,故與臺灣個資法第6條之特種個資並不一致)。且認證辦法規定不得對個人資料的數量為拆分,意即如將資料數量拆成數筆10萬人以下,藉以規避認證辦法資料數量10萬人以上的境外傳輸申請限制並不合法。 除依法應履行的告知外,向境外傳輸前應取得當事人的單獨同意,並採取個資影響評估,影響評估之內容須包含:1.處理者與境外接收者處理個資的特定目的、範圍、方式、2.個資出境的風險、3.境外接收者的個資保護能力與義務、4. 提供事故通報管道、5.境外國家或地區的政策、法規影響。 最後,認證辦法應較注意的是驗證機構的報告義務與受檢義務的明確立法,使得除藉由驗證機構對個人資料處理者的審查確保個人資料國際傳輸的安全外,再透過政府機關對於驗證機構的檢查,以確保監管個人資料跨境傳輸,亦屬於我國政府機關可以參考之個人資料國際傳輸監管面向。
日本推動智慧醫療照護與巨量資料應用之趨勢觀察 美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。