歐盟執委會(European Commission,下稱執委會)於2020年底提出數位服務法(Digital Services Act,DSA)以及數位市場法(Digital Market Act,DMA),而歐洲議會(European Parliament)最終於2022年7月5日以壓倒性的多數決通過上述法案,待歐盟理事會(Council of the European Union)核准通過後,法案將在公告於歐盟官方公報(EU Official Journal)後20天生效,並分別依規定時間開始適用。歐盟理事會已於2022年7月18日率先核准通過DMA,並正進行登載公報相關程序,DMA將於生效日起六個月後開始適用。以下將簡述兩法案主要內容:
1.數位服務法(DSA):主要係處理線上非法內容、不實資訊以及其他社會風險等散播問題。依DSA,數位服務提供者於其服務或交易平台應針對涉及侵害基本權之非法內容即時採取反制措施、強化平台交易者之查核並提高可追溯性、增加平台的透明度及有責性,並應禁止具誤導性及部分特定類型之定向廣告,如針對兒童的廣告或以敏感資訊為基礎的廣告等。
2.數位市場法(DMA):要求大型的主流線上平台於數位市場擔任「守門人」(gatekeeper),以確保消費者有公平的交易環境。守門人應與第三方交互使用服務,並使商業用戶得存取於其平台所生之資料,且不得:在其平台的檢索(index)與索引(crawl)相關排名中自我偏好(self-preferencing)自身產品及服務、令使用者難以卸載預先安裝之軟體或應用程式、以廣告為目的利用使用者個資。值得注意的是,執委會得對違反DMA規定之守門人處以其最高全球總營收10%的罰鍰,累犯者之罰鍰上限將提高至年度營收的20%。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
新加坡八月起發行生物認證辨識電子護照新加坡將從八月起發行擁有生物認證辨識晶片和更多防偽功能的電子護照。為確保新加坡人使用新護照在國外不會遇到困難,有必要進行周全的測試,從使用者的實際經驗中查知不易察覺的問題,確保新護照不會對出國者在各國出入境時造成不便。因此,新加坡移民與關卡局將從 四月二十九日 開始,讓新加坡官員和新加坡航空公司空服員率先試用。第一階段測試完成後,移民與關卡局將全面推廣電子護照,所有在今年八月以後發出的護照,都將是電子護照,取代現有的傳統護照。 移民與關卡局也將與夥伴國對新加坡電子護照進行測試,以便在新加坡推出電子護照時,外國的入境處判讀儀器能判讀電子護照內的資料。事實上早在今年一月,新加坡即與美國、澳洲和紐西蘭三國聯合展開三個月的電子護照測試,測試將在 五月十五日 結束。如果測試進展順利,相關國家的機場都將安裝可以判讀電子護照的儀器,蓋唯有各國都安裝相關系統配合運作,電子護照才能發揮功效。目前,美國已經確認新加坡電子護照符合美國免簽證入境第二級認證,這意味著美國國土安全部測試證實新加坡電子護照與美國的護照判讀儀器相容。此外,新加坡移民與關卡局也將持續積極參與國際民航組織會議,確保新加坡了解國際電子護照的最新發展與概況,以取得同步進展。
研發成果下放就不適用國有財產法嗎?研發成果下放就不適用國有財產法嗎? 資訊工業策進會科技法律研究所 2020年3月26日 科學技術基本法(下稱科技基本法)下放研發成果予執行單位,授權各部會機關按其對研發成果管理運用的需求,彈性制訂該部會之科學技術研究發展成果歸屬及運用辦法(下稱成果運用辦法)。然據悉某些公立學校或公立機關(構)曾在盤點財產時,因漏未將研發成果登入為國有財產,或列帳時未列載相關費用而遭主計處指正,從而對研發成果是否為國有財產及如何適用國有財產法有所疑問。因此,本文先回歸科技基本法,探討國有財產法之適用範圍,再論成果運用辦法和國有財產法間互補適用的關係,以解答上述疑問。 壹、科技基本法排除國有財產法適用之範圍 按科技基本法第6條第1項及第2項[1],當研發成果歸屬於公立學校、公立機關(構)或公營事業等公部門單位時,僅排除適用國有財產法中保管、使用、收益及處分之規定,改由各部會之成果運用辦法規範,故當研發成果歸屬於公部門時,並非完全排除適用國有財產法,係僅於前揭特定管理運用事項適用科技基本法及其授權訂定之成果運用辦法。因此其他未被排除的國有財產法規定[2],包括何謂國有財產與國有財產種類之總則、國有財產登記、設定產籍與維護,以及有關國有財產之檢查與財產報告等仍須依循相關規範。前述遭主計處指正之案例,或許就是忽略歸屬於公部門之研發成果仍有前揭國有財產法之適用,致漏未將研發成果依該法登入國有財產或將相關支出列帳。 貳、成果運用辦法的適用範圍 另一可能造成執行單位在運用其研發成果時產生疑問的原因,是現行各部會之成果運用辦法中,有部分規定與前述科技基本法第6條第2項,將歸屬於公立學校與公立機關(構)之研發成果定性為國有財產之意旨扞格。以衛生福利部科學技術研究發展成果歸屬及運用辦法(下稱衛福部成果運用辦法)為例,雖然按該辦法第2條第5款定義國有研發成果為研發成果歸屬國家所有者。然該辦法第30條第1項第1款[3],卻出現執行單位為公、私立學校、公立研究機關(構)之「非國有」研發成果收入之上繳交比率規定,恐使適用本辦法之公立學校、公立機關(構),誤以為其所有之研發成果可為非國有,而產生無庸適用國有財產法之誤解,亦與該辦法第2條第5款對國有研發成果的定義產生內部矛盾,更與科技基本法第6條第2項相衝突。 當研發成果歸屬公立學校、公立機關(構)時,因上述公部門單位本即為政府機關(構),故歸屬上述單位等同歸屬於國家,凡屬上述單位所有之研發成果即為國有研發成果,也會適用國有財產法;邏輯上不應出現公部門單位擁有非國有研發成果之情況,顯然衛福部成果運用辦法第30條第1項應修正第1款,將非國有研發成果上繳比率規定之適用主體排除公立學校、公立研究機關(構)。 參、結論 現行科技基本法第6條第1項與第2項,使研發成果是否適用國有財產法,會因為其歸屬而有不同。研發成果歸屬於公部門者為國有財產原則上應適用部分國有財產法,例外於特定管理運用事項始適用各該部會的成果運用辦法;而研發成果歸屬於私部門者非國有財產,無國有財產法之適用,僅適用各該部會辦法管理。在這套體制下,執行單位須注意國有研發成果仍是國有財產,仍須依國有財產法進行財產列帳、登記及財產檢查;而出現規定公立學校、公立研究機關(構)「非國有研發成果」條文之成果運用辦法, 則顯與現行科技基本法有違,反致生誤會,建議進行修正。公立學校與公立研究機關(構)在進行研發成果之管理、運用時,除依循各部會成果運用辦法外,應注意科技基本法的意旨,以避免造成被認為未依法處理之情況。 [1]科技基本法第6條第1項及第2項:「政府補助、委託、出資或公立研究機關(構)依法編列科學技術研究發展預算所進行之科學技術研究發展,應依評選或審查之方式決定對象,評選或審查應附理由。其所獲得之研究發展成果,得全部或一部歸屬於執行研究發展之單位所有或授權使用,不受國有財產法之限制。前項研究發展成果及其收入,歸屬於公立學校、公立機關(構)或公營事業者,其保管、使用、收益及處分不受國有財產法第十一條、第十三條、第十四條、第二十條、第二十五條、第二十八條、第二十九條、第三十三條、第三十五條、第三十六條、第五十六條、第五十七條、第五十八條、第六十條及第六十四條規定之限制。」 [2]未被排除而應適用的國有財產法條為:第1條到第8條總則、第9、10、12、16條之管理機構、第17條到第19條國有財產登記、第21條到第24條設定產籍、第26條有價證券保管處所、第27條之損害賠償責任、第30、31條不動產維護、第32、34條公用國有財產之使用和非公用國有財產之變更、第37條受贈財產,第38到41條非公用財產撥用、收益、第42到44、45條不動產與動產出租、第46到48條不動產與動產之利用,處分第49到55條不動產與動產標售、第59條非公用財產之估價、第61到63條財產檢查、第65到70條財產報告、第71到73條之刑責和舉報獎金、第75到77條之施行日期等。內文未提及之其它未排除適用的條文,主要是針對有體物,即動產與不動產的相關規範,和非公用國有財產之管理;而研發成果多為無體財產,即智慧財產權等,且多為公用財產,故使用這部分條文的情況較少,在此不贅述。 [3]衛福部成果運用辦法第30條第1項第1款:「執行單位因管理及運用其非國有研發成果之收入,應依下列規定辦理:一、執行單位為公、私立學校、公立研究機關(構)者,應將其研發成果收入之百分之二十繳交本部。」
歐盟擬立法要求電信業者及ISP業者保留通聯紀錄歐洲議會民眾權益委員會( the European Parliament's civil liberties committee)於2005年11月25日以33票對8票通過新的指令草案,要求電話與網路的通聯紀錄(但不包含內容紀錄)均需被保留6個月到12個月。目前此草案已送交部長理事會(Council of Ministers)審議中。 為避免保留之通聯紀錄遭到濫用,民眾權益委員會要求僅法官可以調閱通聯紀錄,且僅限於調查重大犯罪(例如恐怖份子或是組織犯罪)時始可調閱。但創作及媒體企業協會( the Creative and Meida Business Alliance, CMBA)則希望歐盟能放寬通聯紀錄調閱之限制,允許進行所有犯罪之調查時,特別是在查緝盜版犯罪之情形,能調閱通聯紀錄。 對於業者因配合保留通聯紀錄而增加的額外負擔,則可能透過轉嫁給消費者或是透過整府補貼的方式解決。