日本將數位廣告業者列入特定數位平台之透明性及公正性提升法適用對象

  日本於2022年7月5日閣議決定修正政令將數位廣告(デジタル広告)的大型數位平台(デジタルプラットフォーム)業者列入「特定數位平台之透明性及公正性提升法」(特定デジタルプラットフォームの透明性及び公正性の向上に関する法律)適用對象,修正政令於2022年7月8日正式公布,並預計自2022年8月1日開始施行。

  日本於2020年5月27日通過特定數位平台之透明性及公正性提升法(以下簡稱本法),要求特定數位平台業者公開提供服務條件,主動積極採取因應措施並進行自我評估,以提升特定數位平台透明性與公正性,促進國民經濟健全發展。隨著數位平台重要度與日俱增,數位廣告的數位平台企業影響力亦逐漸擴大,甚至將對媒體事業收益結構帶來重大改變。日本於2021年6月18日閣議決定「2021經濟財政營運及改革基本方針」(経済財政運営と改革の基本方針2021)與「成長戰略實行計畫」(成長戦略実行計画),均提出須關注數位市場競爭環境,因應新時代統整數位廣告市場規則,將數位廣告的大型數位平台業者列入本法適用對象,整合數位平台透明性與公平性規則。

  本次修正政令列入本法適用對象的數位廣告業者包含:一、日本國內營業額在1000億日圓以上的媒體整合型廣告數位平台。二、日本國內營業額在500億日圓以上的廣告仲介型數位平台。日本期望能藉由統整數位廣告市場規則,解決數位廣告市場的垂直整合問題,同時強化消費者隱私保護。

相關連結
你可能會想參加
※ 日本將數位廣告業者列入特定數位平台之透明性及公正性提升法適用對象, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8870&no=67&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
何謂美國NITRD計畫 ?

  美國NITRD計畫係指支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫。美國國會推動所謂的「網絡運作與資訊科技研發現代法(Networking and Information Technology Research and Development Modernization Act)」新法案,藉此取代1991年通過的高速運算法(High Performance Computing Act),進行現代化修法。新法將用來繼續支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫,統整21個聯邦行政機關用於發展資通訊科技之業務與預算,提升政府整體效率。藉由補助學校之外,以公私協力之方式補助企業發展非加密網路、電腦、軟體、資安及相關資訊科技,將藉由加速基礎建設發展,強化資安和隱私保護之資通訊科技。但補助主軸將取代舊法對高速運算電腦研發之重視,轉為重視發展虛實融合系統(Cyber-Physical System,CPS),以利鋪設大數據或物聯網發展所需之資通訊科技基礎建設。而這些資通訊科技的重要性不僅只是影響一般的資通訊科技發展,更能協助其他許多科技及工程領域加速發展,包括從太空科技到生技研發等。

日本發布網路安全相關法令問答集

  日本國家網路安全中心(内閣サイバーセキュリティセンター,或稱National Information Security Center, NISC)於2020年3月2日發布「網路安全相關法令問答集」(サイバーセキュリティ関係法令Q&Aハンドブック),以回應日本內閣在2017年7月27日通過的「網路安全戰略」(サイバーセキュリティ戦略)中所提及應整理相關法制,以利企業實施網路安全措施與對策之決定。因此,內閣網路安全戰略本部(サイバーセキュリティ戦略本部)普及啟發‧人才培育專門調查會(普及啓発・人材育成専門調査会)於同年10月10日成立工作小組,針對網路安全相關法令進行推動與調查工作。   本問答集內容涉及13項法律議題,包括議題如下: 說明網路安全基本法(サイバーセキュリティ基本法)網路安全之定義與概要; 以公司法為核心,從經營體制觀點說明董事義務,例如建立內部控制機制,以確保系統審核與資料揭露之適當性; 以個人資料保護法為核心,例如說明個人資料的安全管理措施; 以公平交易法(不正競争防止法)為核心,說明在營業秘密的保護範圍內,利用提供特定資料與技術手段,來實施迴避行為係屬無效; 以勞動法規為核心,說明企業採取網路安全措施之組織與人為對策; 以資通訊網路、電信業者等為中心,說明IoT相關法律問題; 以契約關係為中心,說明電子簽章、資料交易、系統開發、雲端應用服務等議題; 網路安全相關證照制度,例如資訊處理安全確保支援人員; 說明其他網路安全議題,例如逆向工程、加密、訊息共享等; 說明發生網路安全相關事故之因應措施,例如數位鑑識; 說明當網路安全糾紛有涉民事訴訟時應注意之程序; 說明涉及網路安全之刑法規範; 描述日本企業在實施網路安全措施時,應注意之相關國際規範,例如歐盟一般資料保護規則(General Data Protection Regulation, GDPR)與資料在地化(Data Localization)等議題。   此外,隨著網路與現實空間的融合,各產業發展全球化,相關法規也日益增加,惟網路安全相關法規,在原無網路安全概念與相關法制的日本法上,卻鮮少有較為系統化的概括性彙編與解釋文件。因而盤點並釐清網路安全相關法令則成為首要任務,故研究小組著手進行調查研究,並將調查結果—「網路安全法律調查結果」(サイバーセキュリティ関係法令・ガイドライン調査結果)與「第四次關鍵基礎設施資訊安全措施行動計畫摘要表」(重要インフラの情報セキュリティ対策に係る第4次行動計画)作為本問答集之附錄文件以資參酌。最後,NISC期待透過本問答集,可作為企業實施具體網路安全對策之實務參考。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

IMD世界人才評比

  瑞士洛桑管理學院(International Institute for Management Development, IMD)於2019年11月18日發布2019 年世界人才評比報告(The IMD World Talent Ranking 2019 results)。IMD作為全球最著名商學院之一,其所屬之世界競爭力研究中心(IMD World Competitiveness Center, WCC)透過收集數據以及分析相關政策結果,推進對世界競爭力的認知,包含每年出版年度世界競爭力排名(World Competitiveness Rankings)、世界數位競爭力報告(World Digital Competitiveness Ranking),和世界人才評比報告。   2019 年世界人才評比報告以「人才投資與發展」、「人才吸引力」和「人才整備度」(Readiness)為三大評比指標,評比63個經濟體。「人才投資與發展」衡量國家提供給人力之資源,「人才吸引力」評估吸引本地和外國人才的程度,「人才整備度」則評估人才技術及競爭品質。三大指標下再區分有32個細項,包含公共教育支出、師生比、在職訓練、女性勞動力、學徒制度、員工獎酬及紅利、個人所得稅率、職場環境健康等。   2019年之人才評比結果,前5名均為歐洲國家,依序為瑞士、丹麥、瑞典、奧地利及盧森堡。我國在全球排名20,亞洲排名第3,僅次新加坡(10)與香港(15),勝過排名分別為35和33的日韓兩國,為歷年來排名最佳。細項中,我國較為優勢的部分包括國際學生能力評鑑(PISA)排名第2、理工科畢業生比例全球第3、衛生健康環境全球第6等。

TOP