美國近日為防堵中國、其他受關注國家如俄羅斯等國掌握半導體等高科技行業關鍵技術,遂致力於加強培養其本土之半導體及高科技通訊產業。於美國時間2022年8月9日美國總統拜登簽署 「2022年晶片和科技法案」 (CHIPS and Science Act 2022),該法案除可作為2021年頒布之「美國電信法案」之補助資金來源,發展開放式無線電接取網路(Open Radio Access Network, ORAN)外,亦有望大幅度提升美國本土晶片生產量。
本法案提高美國聯邦政府對科學技術研究及開發專案之授權,除授權美國商務部(Department of Commerce , DOC)、國防部(Department of Defense, DOD)外,還結合國務院(Department of State, DOS)透過資金補助之方式,發展影響美國競爭力及國家安全至關重要之半導體製造等高科技產業、人工智慧、量子計算等科學研究,本法案整體編列之預算高達2800億美元,至2027年時,授權金額預計將達1740億美元,而其中將挹注超過520億美元之資金用於發展美國本土晶片之生產及研發。
此外,該法案設有靜態限制,禁止接受補助之半導體企業投資以電子設計自動化(Electronic design automation, EDA)工具設計或製造晶片之中國公司,換句話言,即受補助之企業不得於十年內投資或擴大生產中國製低於28奈米之先進晶片。本法案亦提供25%之稅收優惠予於美國建造、裝設晶片廠之業者,以鼓勵企業進駐美國藉以提升美國生產之晶片總量,同時藉由企業之投資帶動美國各地經濟發展,提高就業率。
藉由本法案之制定,有望降低美國對其他國家晶片之依賴,並得藉此發展科技研究,對未來全球高科技產業供應鏈將造成偌大影響,值得持續關注。
日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
食品標示 美國新制上路隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDA(Food and Drug Administration, 食品暨藥物管理局)規定從2006年1月1日起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。 依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。 在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。
專利連結/專利扣合機制:國際新藥研發成果保護法制之新興討論議題我國藥廠普遍以產製學名藥為主,而新藥研發風險高且非一蹴可及,故當前藥品科專的研發重點以發展類新藥(redesign drugs)主軸,希冀透過類新藥研發的「成功經驗」,引導業界走出學名藥,投入更高層次藥品領域,推動產業發展。鑑於製藥產業乃是高度規管的產業,除了技術研發以外,也必須切實掌握相關的法規議題,避免因不諳法規致使研發投資錯置或浪費。 觀察國際新藥研發成果保護法制之發展趨勢,藥品查驗登記程序與專利有效性相互扣合的機制(patent-registration linkage),極可能在可預見的未來成為國際間討論的重要議題,鑑於藥品科專之研發補助方向已由學名藥延伸至新藥技術能量,實有必要瞭解政府投入資源鼓勵研發的類新藥,未來由業界承接後是否可能受到此一機制的影響。 藥品查驗登記程序與專利有效性相互扣合機制一般被簡稱為「專利連結」(patent linkage),「專利連結」亦有稱為「專利扣合」,概念上係指將學名藥(generic drug)的上市審查程序,與原開發藥廠之參考藥品(the originator reference product)的專利權利狀態連結在一起;進一步而言,一旦新藥通過主管機關的審查上市後,只要在該新藥相關的專利有效期間,主管機關即不應核准該新藥之仿製藥品上市。 專利連結乃是美國藥品法規與專利法交錯下特有之產物,然美國透過不斷地對其貿易伙伴訴求專利連結的重要性,在美國以外,已有多個國家於其藥品審查程序中建立與專利之連結關係,例如:加拿大、新加坡、澳洲等國。在藥品上市審查之過程中予以專利連結之目的,係為透過機制設計,確保主管機關不得在原開發藥廠之專利到期前核准學名藥上市。在美國法制下,專利連結的運作植基於四大核心概念:(一)新藥相關之專利資訊應於上市後系統化公開;(二)新藥專利有效期間內,主管機關不應核可後續申請者之上市申請;(三)盡可能於許可學名藥上市前解決專利有效性爭議;(四)鼓勵未涉及專利侵權之學名藥及早上市。 值得注意的是,美國專利連結法制所講的學名藥,包括狹義及廣義的學名藥,前者是指具有相同的活性成分、相同的劑型、治療相同適應症的藥品;後者則是指對已上市新藥的改良藥品,可見其概念上涵蓋我國當前鼓勵研發的類新藥。專利連結對於類新藥之影響,需視其如何上市而定,若類新藥是以NDA方式申請上市,雖然上市成本高,但其研發成果卻可以因為實施專利連結制度,享有更進一步的保護;另一方面,若廠商基於成本考量不願自行或委託他人進行臨床試驗,因而無法提出完整之NDA申請資料者,則專利連結將會對其產生衝擊。 綜上所述,雖然專利連結制度具有鼓勵新藥研發的作用,但由於我國當前製藥產業結構仍以中小型規模的學名藥為主,加上我國藥品專利之申請及取得者,90%以上為外國藥廠,故若實施專利連結,短期內勢將衝擊我國製藥產業,且美國、加拿大的實務運作經驗顯示,專利連結制度容易被藥廠濫用,因此我國在考慮是否建立此一制度之前,必須先就我國製藥產業的競爭情勢有所瞭解,並充分掌握我國產業結構與先進國家製藥產業之根本性差異,始能根據我國國情制訂權衡原開發藥廠與學名藥廠雙方利益,並保障公眾健康權益之法制。 當前最重要者仍是要提醒廠商尊重智慧財產之重要性,既然學名藥是要在專利到期後上市,則學名藥廠商在進行其新藥開發時,自應有完整規劃與佈局。開發狹義學名藥,其幾乎等同原開發藥廠的品牌藥,對於我國廠商技術能力之提升有限,故應鼓勵廠商投入廣義之學名藥(類新藥)之研發,如此不但有迴避專利之可能,亦可逐步累積我國產業之研發能量,則專利連結將不會成為其研發與競爭之阻力。
世界經濟論壇發布《2022年全球網路安全展望》世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。