歐盟執委會發布《歐盟晶片調查報告》提出四點發現以利未來晶片法相關計畫制定

  歐盟執委會(European Commission)於2022年8月2日發布《歐盟晶片調查報告》(European Chips Survey Report,下稱調查報告),調查結果顯示業界至2030年為止,對晶片之需求將倍數成長。調查報告於2022年2月啟動,其目的在收集有關晶片和晶圓(wafer)現行及未來需求的初步資訊,作為了解晶片供應危機對歐盟產業影響的第一步。調查報告總共收到141份來自半導體供需雙方廠商之回饋意見,其中有54.9%來自大型企業、17.3%來自中型企業、19.5%來自小型企業、8.3%來自微型企業。調查報告對上述意見進行分析,以提供來自半導體價值鏈洞察與預測的觀點。

  調查報告主要包括以下四點:
  (1) 預計2022年至2030年間晶片需求將倍增,未來對領先半導體技術的需求將顯著增加。
  (2) 在選擇製造地點時,建立新晶片製造設施的公司將著重合格的勞工及遵循政府法令。
  (3) 供應危機影響所有生態系統,預計至少會持續到2024年,迫使企業採取代價較高的緩解措施。
  (4) 半導體研發資金主要與供應方相關,但補助計畫(support initiatives)也與需求方相關。

  2022年2月8日歐盟執委會提出《歐盟晶片法草案》,旨在處理半導體短缺以及加強歐洲技術領先地位。隨著歐洲半導體專家小組開始研究監控與盤點架構,調查報告的結果可以協助制定《歐盟晶片法草案》與相關計畫。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 歐盟執委會發布《歐盟晶片調查報告》提出四點發現以利未來晶片法相關計畫制定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8880&no=0&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
美國《聯邦採購規則》(FAR)

  2019年8月7日,美國總務署(General Services Administration, GSA)、國防部(Department of Defense, DoD)及航空暨太空總署(National Aeronautics and Space Administration, NASA)共同發布一項暫行規定(interim rule),依據2019美國《國防授權法》(National Defense Authorization Act, NDAA)修正美國《聯邦採購規則》(Federal Acquisition Regulation, FAR),以公共及國家安全為由,禁止美國聯邦機構購買或使用包括華為、中興通訊、海康威視、海能達及大華科技等5家中國大陸企業、子公司與關係企業所提供之電信或視頻監控設備及服務。禁令並擴及經美國國防部長與國家情報局局長或聯邦調查局局長協商後,合理認為屬特定國家地區所擁有或控制之實體,或與該國家地區的政府有聯繫者。該暫行規定已於2019年8月13日生效,美國政府有權為不存在安全威脅的承包商提供豁免直至2021年8月13日。並預計在2020年8月,全面禁止美國聯邦機構與使用該中國大陸企業設備與服務之公司簽訂契約。   2019美國《國防授權法》第889(a)(1)(A)條,明文禁止美國聯邦機構採購或使用特定企業所涵蓋之電信設備或服務,並禁止將該類產品作為設備、系統、服務或關鍵技術的實質或必要組成。本次修正美國《聯邦採購規則》,即配合新增第4.21小節「禁止特定電信和視頻監控服務或設備的承包」,並於52.204-25中明訂「禁止簽訂與特定電信和視頻監視服務或設備契約」。故除非有例外或豁免,禁止承包商提供任何涵蓋特定中國大陸企業之電信設備或服務,作為設備、系統、服務或關鍵技術的實質或必要組成部分。承包商及分包商必須在契約履行過程中,報告有無發現任何使用此類設備、系統或服務之情形。

美國白宮發布國家生物經濟藍圖

  美國白宮終於2012年4月26日正式發布「國家生物經濟藍圖」(National Bioeconomy Blueprint),宣告未來美國將以生物技術為首的投資、研究與商業經濟活動列為優先支持的對象。近年來美國苦思於如何在國內經濟成長疲軟與失業問題上尋求解套,而有鑒於全球「生物經濟」(Bioeconomy)的快速崛起,歐巴馬政府遂寄望於生物經濟,期望藉由支持生物技術的研究創新與商業活動,帶動國內投資、提升就業率及經濟成長,並仰賴生物科技的發展增進國民福址。因此,白宮科學與技術政策辦公室(The White House's Office of Science and Technology Policy, OSTP)便於2011年10月起開始向生物醫藥、生物科技相關產業及研究機構徵集意見,歷經半年的規劃,始產出此部發展藍圖。   國家生物經濟藍圖首先劃定生物經濟的五大趨勢,包括:健康、能源、農業、環境及知識技術的分享。其次揭示了未來美國生物經濟的五大發展策略目標及其具體作法: (一)支持各項研發投資以建立生物經濟的發展基礎: (1)強化生物技術的各類研究發展,如生物醫藥、生質能源、生物綠建築、生物農業等 (2)實施新的補助機制以使得生物經濟投資達最大化,例如國家科學基金會於2012年推動的CERATIV(Creative Research Awards for Transformative Interdisciplinary Ventures)獎補助計畫。 (二)促進生物技術發明的市場應用與商業化: (1)加強生物醫藥的轉譯及管制科學(translational and regulatory science)發展; (2)由國家衛生研究院(National Institutes of Health,NIH)及食品藥物管理局(Food and Drug Administration,FDA)等相關主管機關主動檢視、調整既有法規,以加速生物技術成果的商業化(如生物醫藥的上市)。 (三)改革並發展相關規範,以減少法規障礙、增加規範程序的效率與可預測性: (1)減少可能影響生醫產業發展的法規障礙; (2)對於低風險的醫療裝置,降低其遵循法規的成本負擔; (3)由食品藥物管理局等相關主管機關,對於醫藥產品採行雙向規範審查(Parallel Regulatory Review),以減少產品上市時間。 (四)更新相關國家人才培訓計畫,並調整學術機構對學生訓練的獎勵機制,以符合國家與產業發展的勞動需求。 (五)支持公私夥伴及競爭前合作(Precompetitive Collaborations)關係的發展:由國家衛生研究院及食品藥物管理局等相關主管機關鼓勵、支持公私或私人部門間形成夥伴關係,共同針對生物醫藥及食品安全進行創新研究發展。   由「國家生物經濟藍圖」對美國未來生物經濟發展的策略及具體做法看來,其內容相當廣泛,從促進各種生物技術的研發投資、生技成果商業化運用、產品上市管制鬆綁、科技人員培育,再到公私部門合作的增進,完整涵蓋了整個生物技術產業發展的各個必要環節,雖已點出生物技術產業發展有待突破之處,但對於其具體法規與配套機制,仍有待日後一一落實。因此,未來本藍圖將如何形塑美國各領域生物技術產業的輪廓,並影響法規與促進機制之細節,值得持續觀察之。

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日   科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。   為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。   為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。   另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。   研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。   NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。   GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。   為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。

TOP