美國聯邦通信委員會通過新「5年軌道碎片規則」,以應對日益增加之軌道碎片風險

  美國聯邦通信委員會(Federal Communications Commission,FCC)於2022年9月29日以4票對0票通過新的軌道碎片(太空垃圾)規則,以求解決軌道碎片碰撞的成本風險,促進低地球軌道區域經濟利用。

  新軌道碎片規則將大幅縮短原本長達 25 年的衛星任務後處置指南,要求運行於低地球軌道區域(高度低於2,000公里)之太空載具,營運商應於其任務結束5年內進行「脫軌」處置,例如將衛星脫離軌道,使其落入地球大氣層並燃燒殆盡,或開發新的太空垃圾清理技術進行衛星回收,以降低衛星碰撞風險。且新軌道碎片規則除以美國許可發射的衛星為其適用對象外,同樣適用於欲進入美國市場之衛星系統營運商,因其向FCC之申請流程中,包含衛星任務長度及衛星脫軌時間表,故受系爭新規則拘束。

  FCC主席Jessica Rosenworcel表示,目前太空中有數千噸的軌道碎片,為了開創新的太空時代,解決軌道碎片問題是必要的,尤其是低地球軌道區域,新的5年軌道碎片規則即是旨在透由縮短任務結束後太空載具的處置時間;FCC專員Athan Simington亦表示,美國約代表50%的國際太空經濟,新軌道碎片規則將擴展到所有尋求進入美國市場的營運商,預期可成為全球營運商默示且無法抗拒之規則。

  考量系爭新規則將增加營運商之負擔及成本,FCC定有2年過渡期間,即2024年9月29日後發射的太空載具,方適用新的5年軌道碎片規則。

相關連結
※ 美國聯邦通信委員會通過新「5年軌道碎片規則」,以應對日益增加之軌道碎片風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8904&no=67&tp=1 (最後瀏覽日:2025/05/20)
引註此篇文章
你可能還會想看
GSM 協會公布未來行動電話市場的規範原則建議

  在面對未來3G行動通訊市場的激烈競爭中,主管機關應如拿捏管制的強度?GSM協會於2006年2月6日公布未來行動通訊市場的規範原則建議有執法者應持續注意管制干預手段可能造成的成本及效益;管制目標及政策應該被清晰定義,且管制手段應符合最小干預及必要性;管制的內容必須是可公開即可受公評;應以市場現況,並從微觀及宏觀角度進行規範;在發照政策上應鼓勵新進業者對於電信設施的建設並促進有效市場競爭;頻譜的核配應從促進經濟上的效率、有效競爭及從市場結構面進行考量;對於行動通訊網路的限制應基於以科學、技術或確實研究結果,而不以公共顧慮為考量;對於客戶資料的不當用途,應設計安全防範措施等等。

美國聯邦首席資料長委員會指出2021年工作重點之一在於促進跨機關的資料共享

  2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。   CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。   美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。   譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。   CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。

生物識別技術走進零售業

  近期幾家大信用卡公司遭駭客入侵,使得消費者受到了越來越大的身份被盜用的威脅。對此,能使購物更加安全的技術,特別是生物識別技術,包括電影中常見到的虹膜掃描,以及相對普及的指紋,聲音,臉部特徵識別等,越來越引發了人們的興趣。   目前,美國第二大零售連鎖店 Albertson 已經和其他數百個零售商一起加入了生物識別付款的試點行列。該公司發言人表示,新付款方式則大大加速了結帳的速度;另外也可以自動識別是否賣菸酒給未成年人。   不過生物識別技術的根本的缺陷在於隱私問題,因?這項技術意味著對個人資訊的集中儲存。而這個系統必然會成?駭客和其他居心不良者的「蜜罐」,一旦這個儲存系統被攻破,並將受害者的生物資訊惡意更改,受害者將面臨身份被終極盜用的噩夢。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP