《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。
《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
1.對決策過程進行描述,比較分析其利益、需求與預期用途;
2.識別並描述與利害關係人之協商及其建議;
3.對隱私風險和加強措施,進行持續性測試與評估;
4.記錄方法、指標、合適資料集以及成功執行之條件;
5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
6.對代理商提供風險和實踐方式之支援與培訓;
7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
9.自透明度的角度評估消費者之權利;
10.以結構化方式識別可能的不利影響,並評估緩解策略;
11.描述開發、測試和部署過程之紀錄;
12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
13.無法遵守上述任一項要求者,應附理由說明之;
14.執行並記錄其他FTC 認為合適的研究和評估。
當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。
全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
歐盟執委會推遲個人資料保護指令修正計畫歐盟執委會主席Barroso在今年年初設立了負責「正義、基本權與公民」(Justice Fundamental Right and Citizenship)事務的新任務單位。而負責此單位的執委會委員Reding自年初以來已多次宣示對個人資料保護以及隱私權的重視。在今年三月份的演講中,Reding更宣布將在年底前提出修正歐盟個人資料保護指令的內容。惟此承諾在歐盟會員國的壓力下恐怕無法踐履了。歐盟執委會於日前已表示將提出一份新的行動宣示來取代原先的修法計畫。 歐盟目前的個人資料保護指令乃在1995年制定,迄今已有15年之久,雖然其許多原則在今日仍然適用,但面對新科技、新應用,如社交網站、雲端應用等的發展,該指令仍不免顯出不足之處。此外,在原先的架構下,執委會也無法介入所謂歐盟「第三支柱」下的事務(亦即與犯罪相關的警政、司法合作事務),但此狀況在里斯本條約通過後理應有所改變。以上兩點也正是Reding提議修正個人資料保護指令的理由。但由於部分歐盟會員國政府認為Reding所提有窒礙難行之處,例如法國即直言Reding的修法時程不切實際,執委會及Reding也因此放棄原先規劃。至於新的行動宣示到底會不會真的納入歐盟個人資料保護指令的修正計畫,其時程與內容如何,值得持續注意。
菲律賓推動基改稻米 窒礙難行根據國際間重要農糧組織ISAAA(International Service for the Acquisition of Agri-Biotech Applications)所公布的2004年統計報告,全球基改作物栽種面積已達八千一百萬公頃,在2003年僅有六千七百萬公頃,成長幅度高達20%,尤其是在開發中國家。菲律賓是亞洲第一個支持商業化生產基因改造食物的國家,從2000年起即開始商業交易基因改造作物。由於其所研發之轉殖”IR-72”稻米品種栽培並不普遍,也未被消費者、農夫及麵粉業者廣泛地接受,因此不合適商業化生產,雖然菲律賓嘗試其他較受歡迎的品種來進行基改轉殖,但迄今尚未成功。 基於基因稻米對於環境安全和人體健康所帶來的影響是無法預知的,綠色和平組織抗議菲律賓政府加速推動生技農作物的計畫。菲律賓所面臨的挑戰不單僅是綠色和平的抗議,另一個因素因為氣候的不穩定而影響了稻米的產量,今年生產量僅148萬噸,距離目標?151萬噸,因此仍需仰賴進口稻米來彌補這不足的差距。 菲律賓稻米研究中心執行長Leo Sebastian認為,基改稻米並不是解決稻米供應不足的唯一方式,引介栽種高生產量的稻米品種或者改善灌溉系統等都是可行的方式。
歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。 歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何? 歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。 此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。