美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。

  《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
  1.對決策過程進行描述,比較分析其利益、需求與預期用途;
  2.識別並描述與利害關係人之協商及其建議;
  3.對隱私風險和加強措施,進行持續性測試與評估;
  4.記錄方法、指標、合適資料集以及成功執行之條件;
  5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
  6.對代理商提供風險和實踐方式之支援與培訓;
  7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
  8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
  9.自透明度的角度評估消費者之權利;
  10.以結構化方式識別可能的不利影響,並評估緩解策略;
  11.描述開發、測試和部署過程之紀錄;
  12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
  13.無法遵守上述任一項要求者,應附理由說明之;
  14.執行並記錄其他FTC 認為合適的研究和評估。

  當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

你可能會想參加
※ 美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8912&no=67&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
何謂「創新採購」?

  歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序: 1.簡化及採用彈性的政府採購程序 2.擴大適用電子招標; 3.改善中小企業參與招標程序; 4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。   因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。   其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。   前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。

立法責令ISP業者留存紀錄之呼聲日益高漲

  立法強制 ISP 業者記錄客戶使用狀況以供日後調查之用,此等呼聲近來日形高漲。部分行政部門官員業已表態支持此一作為;另有數位國會議員亦主張,應儘速推動聯邦層級之立法,以協助執法部門對付兒童色情( child pornography )問題;甚至在科羅拉多州,目前已有相關法案進入該州參議會接受審理。   立法強制業者留存資料或記錄的作法,固然對於揭發犯罪繩之以法甚有裨益,但由於可能會讓警方得以取得電郵往來、網頁瀏覽、聊天記錄等向來可能經過幾個月之後就會刪除的資料,以致隱私保障人士以及 ISP 業者普遍對此甚感憂慮。歸納而言,其理由主為以下三點:第一,何人始有權限近用相關資料,探查他人上網行為之紀錄,仍待釐清;第二,存留該等資料所需空間勢必可觀,費用究竟由誰支應,亦屬未定;最後,現行法制是否對於警方辦案確實造成障礙,同樣有待探討。   美國司法部( the U.S. Department of Justice )去年即已逐步開始推動相關立法,而歐洲議會( the European Parliament )去年 12 月審議相關條文增修,要求 ISP 業者以及電信業者就其經手傳輸之所有電子訊息以及通話,均須保存相關紀錄 6 個月至 2 年之譜,更是引發諸多關注及討論。美國眾議院( the U.S. House of Representatives )能源商務委員會( the Committee on Energy and Commerce )監控調查組( the Subcommittee on Oversight and Investigations )預計本月 27 日將召開另一次聽證會,持續就此議題詳加探討。

歐盟發布「人工智慧白皮書」以因應人工智慧未來可能的機遇與挑戰

  人工智慧目前正快速發展,不論是在醫療、農業耕作、製造生產或是氣候變遷等領域上,均帶來了許多改變,然而在人工智慧應用之同時,其也存在許多潛在風險如決策不透明、歧視或其他倫理與人權議題。   歐盟為求在全球競爭激烈的背景下,維護其於人工智慧相關領域的領先地位,並確保人工智慧技術於改善歐洲人民生活的同時,亦能尊重(respecting)人民權利,乃於今年(2020年)2月發布「人工智慧白皮書」(White Paper on Artificial Intelligence),將採投資及監管併用之方式,促進人工智慧應用與解決其相關風險,其對於未來促進人工智慧的應用(promoting the uptake of AI)與相關風險解決,計畫朝向建立卓越生態系統(An Ecosystem of Excellence)及信任生態系統(An Ecosystem of Trust)兩方面進行。   在建立信任生態系統中,歐盟提到因為人工智慧具有變革性的潛力,所以就信任的建立乃至關重要,未來歐洲人工智慧的監管框架除了須確保遵守歐盟法規外(包括基本權利保護與消費者權益維護之規範),對於高風險性之人工智慧應用,其將強制要求需於銷售前進行合格評定(mandatory pre-marketing conformity assessment requirement)。而有關高風險性之定義,歐盟於該白皮書指出須符合以下兩個要件: 考量人工智慧應用之一般活動特徵,其預計會有重大風險的發生,例如在醫療保健、運輸、能源和可能屬於高風險的公共領域;以及 在預期用途或應用上都可能對個人(individual)或企業(company)帶來重大的風險,特別是在安全性(safety)、消費者權益(consumer rights)與基本權利(fundamental rights)上。   歐盟委員會目前針對於以上白皮書之內容與附隨報告,將向公眾徵詢意見至今年5月19日。

知己知彼,兩岸研發經費比一比

  依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。   另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。   然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。

TOP