美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。

  《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
  1.對決策過程進行描述,比較分析其利益、需求與預期用途;
  2.識別並描述與利害關係人之協商及其建議;
  3.對隱私風險和加強措施,進行持續性測試與評估;
  4.記錄方法、指標、合適資料集以及成功執行之條件;
  5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
  6.對代理商提供風險和實踐方式之支援與培訓;
  7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
  8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
  9.自透明度的角度評估消費者之權利;
  10.以結構化方式識別可能的不利影響,並評估緩解策略;
  11.描述開發、測試和部署過程之紀錄;
  12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
  13.無法遵守上述任一項要求者,應附理由說明之;
  14.執行並記錄其他FTC 認為合適的研究和評估。

  當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

你可能會想參加
※ 美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8912&tp=1 (最後瀏覽日:2025/11/15)
引註此篇文章
你可能還會想看
美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)

  美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。   聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。   政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。   因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。

澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。   本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

日本經濟安全保障推進法提出國家經濟安全四大政策

  日本於2022年5月18日公布「經濟安全保障推進法」,為了確保、防止經濟相關活動危害國家安全,該法將自公布後2年內(至2024年5月17日)分階段施行。日本已於8月1日設立「經濟安全保障推進室」承擔與相關省廳調整作業、制定基本方針及公共評論等,將與日本國家安全保障局(NSS)共同完成經濟安全保障政策。   經濟安全保障推進法主要有四個面向:   一、確保重要物資安定供給(該法第2章)。   二、提供安全基礎設備的審查(該法第3章)。   三、重要技術的開發支援(該法第4章)。   四、專利申請的非公開制度(該法第5章)。   首先就重要物資部分,明定須符合國民生存不可或缺、過分依賴海外支援、若停止出口等原因將導致中斷供給、或實際有中斷供給情事發生等要件,即為重要物資。國家會提供資金等資源援助重要物資的企業經營者,但對其有調查權,若企業不接受調查則受有罰則。   而針對電信、石油等領域之基礎設備,為穩定提供勞務及避免該基礎設備有損害國家安全、社會經濟秩序之虞,於基礎設備引進或維護管理時,企業須事前申報相關計畫書(記載重要設備供給者、設備零組件等),倘認為有妨害國家安全之虞,則可採取禁止設備導入、終止管理等必要措施。   關於重要技術開發支援,列舉了20個領域包括AI、生物技術等,將由經濟安全保障基金撥款,選定各領域之研究人員組成產官協議會委託研究業務等,但應對研究內容為保密,否則設有徒刑等罰則。   另對於科技技術之發明專利,若公開將損及國家安全時,專利廳會將專利申請送交內閣府,採取保全指定措施,於指定期間內,禁止其向外國申請IP、禁止公開發明內容、暫時保留專利核定,防止科技的公開和資訊洩露,但國家應補償不予專利許可所遭受之損失。   針對上開政策已有業者反映國家管理措施太强,將可能成為企業絆腳石,特別是進行審查時有可能導致企業活動速度放慢,應掌握實際情況。

5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。   白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。   此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。

TOP