美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。

  《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:
  1.對決策過程進行描述,比較分析其利益、需求與預期用途;
  2.識別並描述與利害關係人之協商及其建議;
  3.對隱私風險和加強措施,進行持續性測試與評估;
  4.記錄方法、指標、合適資料集以及成功執行之條件;
  5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);
  6.對代理商提供風險和實踐方式之支援與培訓;
  7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;
  8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;
  9.自透明度的角度評估消費者之權利;
  10.以結構化方式識別可能的不利影響,並評估緩解策略;
  11.描述開發、測試和部署過程之紀錄;
  12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;
  13.無法遵守上述任一項要求者,應附理由說明之;
  14.執行並記錄其他FTC 認為合適的研究和評估。

  當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

你可能會想參加
※ 美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8912&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
美國及其他CRI成員共同發布國際反勒索軟體倡議聯合聲明,說明其關鍵成果與未來展望

美國及其他參與國際反勒索軟體倡議(International Counter Ransomware Initiative, CRI)之50個成員(含國家及國際組織),於2023年10月31日至11月1日召開第三次大會,並且發布聲明表示:應積極建立對抗勒索軟體之集體韌性(collective resilience)、共同合作降低勒索軟體之散布能力、追究相關行為人之法律責任、制裁非法資助勒索軟體之組織、與私部門合力防止勒索軟體攻擊。 CRI於2023年之關鍵成果主要可分以下三個面向: 一、加強資安管理能力 對CRI新成員提供指導及戰術培訓,例如由以色列督導約旦,以確保新成員之資通安全。此外,亦發起利用人工智慧打擊勒索軟體之計畫。 二、促進資訊共享 設立可即時更新之資訊共享平台,使CRI成員得以迅速分享資安威脅指標。如立陶宛之惡意軟體資訊共享計畫(Malware Information Sharing Project, MISP)、以色列及阿拉伯聯合大公國之水晶球平台(Crystal Ball platforms)。 三、反制勒索軟體使用人 CRI發布前所未有之共同政策聲明,闡明成員不應支付贖金,且創設成員間共享之加密貨幣錢包黑名單(blacklist of wallets),以便揭露勒索軟體使用人之非法帳戶,並公開與犯罪組織之金流紀錄。另,CRI於2024年起將持續致力發展前述聲明提及之目標,並優先向潛在成員進行宣導,透過提供量身訂做之資安應變能力培訓,滿足潛在成員之需求。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

德國訂定租戶電力促進法並修正相關再生能源法,以鼓勵太陽能發電直供

  為鼓勵出租人利用屋頂型太陽能裝置直接提供承租戶用電,並鼓勵推動民眾參與能源轉型,德國制訂「租戶電力促進法」(Gesetz zur Förderung von Mieterstrom)及修正相關再生能源法,並於2017年7月已正式生效。   所謂「租戶電力」(Mieterstrom)係指來自建築物本身裝設或周遭區域裝置的太陽能設備生產之電力,未循傳統利用方式將電力饋入一般電網中,而直接就地(Vor Ort)提供給終端用戶(主要為建築物承租戶)電力使用。但查現行太陽能電力之利用狀況,發電設備所有人(同時也是出租人)多數仍選擇將發電饋入電網,以取得依再生能源法規定之相當報酬。新法制訂後,未來出租人將電力提供給承租人後仍可獲得同樣報酬,而原先承租人負擔許多自電網中購電必須支付的電網費、網路端分配費、電力稅及其他雜費,以及未來可能會產生的附加費等,也可節省下來。   因此,透過本法將可提升發展與使用太陽能的經濟誘因。一方面促使出租人將太陽能發電直供承租人使用,依據其太陽能裝置及太陽能板鋪設大小,出租人約可獲得3.8歐分/kWh~2.75歐分/kWh之間的報酬,此外,並限制補助太陽能裝置為每年500MW以下,以確保發電容量符合用電發展。而依據德國經濟與能源部委託相關研究報告顯示,有高達380萬的家庭戶具備開發此種直接向租戶供電的潛力。另一方面,該法亦包含租戶電力契約的存續期間,及承租人將保有電力供應商的選擇權,並設定其租戶電力費用上限(修正能源經濟法§42a),以確保租戶電力費用具市場競爭力。

歐盟發佈「降低高速電子通訊網路建置成本」草案

TOP