歐盟執委會(European Commission, EC)於2022年11月29日發布「無人機戰略2.0」(Drone Strategy 2.0),以全球最先進的歐盟無人機操作與設置技術安全框架為基石,為歐洲無人機市場設定發展願景,並闡述歐洲在大規模擴展商用無人機的同時,將如何提供產業新契機。
歐盟除以無人機交通監管系統計畫(U-SPACE)進行政策推動外,為擴張歐洲無人機市場,歐盟執委會提出「創新空中移動」(Innovative Air Mobility, IAM)與「創新空中服務」(Innovative Aerial Services, IAS)等2項新概念。前者包括國際、地區與城市空中移動(Urban Air Mobility, UAM)概念,期待以定期載客服務實現最終全自動化、有效整合並補充既有運輸系統與服務,以及提出有助於改善交通運輸系統碳排放的去碳(decarbonisation)替代方案。此外,透過廣泛布建並整合地面與空中基礎設施,將使UAM成為未來城市複合式智慧移動生態系統(multimodal intelligent mobility ecosystem)之一部;而後者則涉及無人機多元應用,諸如緊急服務、測繪、巡檢、偵查與物流運輸,抑或最終實現全自動化空中計程車(Air Taxis)等創新應用型態,期待相關應用於2030年成為歐洲日常生活的一部份。
為實現上述願景,歐盟提出「建立聯盟無人機服務市場」與「加強歐洲民用、安全與國防產業能力與綜效(synergies)」等兩項目標,其中涵蓋十大領域(例如:改善空域能力、促進航空作業、發展IAM、提供資金與融資、確立關鍵技術模組化(critical technology building blocks)),並從中啟動十九項攸關操作、技術與財務的關鍵行動(例如:建立支持在地利害關係人與產業落實永續的IAM線上平台、推動通用標準、採用反制無人機系統(C-UAS)、協調共同方法以提供無人機操作所需之無線電頻譜等),為未來無人機空域與市場,建立妥適的監管與商業環境,並加強無人機營運商、無人機製造商、國防部門、反制(counter)無人機,以及U-SPACE等有關無人機價值鏈(value chain)就不同環節上之效率。
本文為「經濟部產業技術司科技專案成果」
日本政府於6月29日召開關於賦予國民每一個人一個編號以便掌握每個人所得的「共通編號制度」的檢討會,會中決定將以利用於納稅與社會保障給付為軸心,朝引進制度推動的三種選擇方案。會中也討論到利用於減緩使低收入群負擔愈加沈重的消費稅的「逆進性」上。目前提出相關方案也有緩和參議院改選中有關增稅批評的目的。 從之後的1個月內會開始募集國民的意見後,到年底會將三種方案綜合為一案,以明年的一般國會會期中提出相關法案的方向推動。 有關共通編號制度,當然被指出會有個人資訊外洩與侵害隱私權的憂慮。菅直人首相在檢討會中提到「希望是立於國民本位制度上的來思考,也必須得到國民大眾的瞭解」。在檢討會中承認僅供稅務使用的A案、用於稅務與社會保障的B案及用於大範圍的行政領域上的C案,使用範圍各自不同的三種方案。 也出現希望所賦予的新編號能與目前正在使用中的「住民票號」能夠接軌的想法。利用編號制度正確掌握國民的所得情形,進而在增加消費稅之時,就有可能適切地對低收入群進行減稅與用現金補助。 消費稅是對包含生活必需品等大範圍的物品及服務課稅,所以愈是對將收入用於消費的比例龐大的低收入群會對增稅的負擔愈感沈重。 對減緩此一逆進性的有效制度,就是對有繳納的所得稅給予減稅,沒繳納所得稅的給予現金補助的「附給付的稅額扣減」。充分利用編號制度,將可補足反映所得所能退補的金額。
歐盟個人資料保護工作小組就目的限制原則發表意見2013年4月2日,歐盟個人資料保護工作小組(the Article 29 Working Party,以下稱「工作小組」),就目的限制原則(purpose limitation principle)發表意見書,檢視歐盟資料保護指令(Data Protection Directive)第六條所規定的目的限制原則,包括(一)資料的蒐集必須具有特定、明確與合法之目的,以及(二)資料的處理或利用必須符合資料蒐集時之目的。 另一方面,工作小組亦檢視目的限制原則對巨量資料(big data)與開放資料(open data)可能會造成的潛在衝擊: 1.就巨量資料的部分而言,工作小組界定了二個應用情境,一是分析巨量資訊,以分析辨識趨勢或資訊間的相關性,另一是直接影響個人(例如,對當事人的行為進行追蹤、分析、側寫,並據此進行廣告與行銷)。對此,工作小組認為,應給予當事人選擇的權利,另外,組織應揭露關決策標準,並且提供當事人之側寫資料。 2.關於開放資料,工作小組強調匿名化以及資料保護衝擊分析的重要性,以確保必要的安全措施。 工作小組提出兩項修正意見,包括(一)個人資料保護規則(General Data Protection Regulation)草案的第五條宜針對目的限制原則為更明確之規定,以及(二)刪除個人資料保護規則草案第六條第四項之規定。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
美國聯邦與州政府對於污染物排放超標免責立法之衝突。美國聯邦最高法院在2017年6月拒絕對聯邦法令-廠房之啟動,停工,與故障之許可證取得(Startup, Shutdown, Malfunction, SSM)底下之州際執行計畫(State Implementation Plans,SIPs)免責條款的上訴聽案,即各州對於SSM的污染物超標限制,無權力訂定免責條款。1聯邦法令SSM規定公司廠房等所有者或營運者需對於初始營運、日後關閉、中間故障等作業程序與維護措施做成報告以獲得並定期更新營業許可證,報告中需對於預測與計畫中的污染物排放與災難可能做說明,並以遵守聯邦法規對污染物排放相關規定為前提。2 聯邦政府當時以美國聯邦法規(Code of Federal Regulation)以及空氣清潔法案(The Clean Air Act)裡的國家周遭空氣品質標準(National Ambient Air Quality Standards) 為準則,授予各州訂定SIP的權限,因此才有各州多以促進經濟、展業發展為由而自行訂定免責條款的產生。 在原本的SSM機制下,計畫中的污染物超標可能適用各州的免責條款,而非計畫或預測中的污染物超標則會依是否有正當辯護,而可能被下禁治令。隨後,因美國前總統歐巴馬十分重視環境保護,而與美國環境保護總局(Environmental Protection Agency,EPA)頒佈新政策,下令各州把其SIP裡對於污染物超標的免責條款全部刪去。 這樣的大動作使各州政府與企業主十分不開心,便開啟了一連串與EPA的訴訟。2008年D.C.巡迴法院在Sierra Club v. EPA 3判定SSM期間內的違反污染污物排放限額不得有任何免責例外。2014年D.C.巡迴法院於Natural Resources Defense Council v. EPA 4更判定EPA沒有權限給予在SSM期間內違法業者創造任何答辯。雖然美國聯邦最高法院拒絕對此爭議聽案,但目前EPA仍有與州政府及企業主訴訟案在進行。