國際能源總署(International Energy Agency, IEA)於2022年12月6日發布2022年再生能源報告(Renewable 2022),其整理和分析各國之再生能源政策和市場發展現況,並預測再生能源於2022至2027年間在電力、交通和供熱的部署情況,同時提出相關產業在發展上的主要障礙。報告重點如下:
(1)能源危機加速再生能源成長
烏俄戰爭所導致之能源危機,迫使各國加速其推動再生能源之政策,例:中國的十四五年規劃、歐盟的REPowerEU計畫,以及美國的降低通膨法案(Inflation Reduction Act)等等,將使2022至2027年間全球的再生能源裝置容量提升約2400GW,等同於中國目前電力的總量,其中歐盟、中國、美國和印度在未來五年間所建置之再生能源,將是過往五年的兩倍;而未來五年間全球成長之電力裝置容量中,再生能源的部分將占90%以上,並且,其總裝置容量將於2025年超越燃煤,成為最大宗的電力來源,其中,又將以太陽光電和風電為主要的發電方式。
(2)各國再生能源法制政策仍有進步空間
國家再生能源法制的不確定性、經濟措施不足、許可程序繁冗,以及電網設施的缺乏,都將阻礙再生能源的發展,若能消除該些障礙,包含簡化許可程序、改善競標方式及提升誘因機制,全球再生能源的成長速率將能再提升25%。
(3)再生能源轉換為氫氣之應用將大幅提升
隨著超過25個國家的氫能政策,全球用於電解產氫的風電和太陽光電裝置容量於2022至2027年間將達50GW,提升近100倍,而主要發展之國家為中國,其次則是澳洲、智利和美國。
(4)生質能的需求持續增加並需開發更多元的原料來源
國際對於生質能的需求將持續增加,在未來五年裡預計成長22%。其中,廢棄物和殘渣的利用是生質燃料重要的一環,至2027年時將有約三分之一的生質燃料來自該兩者,而在燃料需求擴增並造成供應壓力的情況下,則有待政策的推動和技術的研發,以開發更多元且永續的生質能原料。
(5)再生能源供熱的發展程度仍無法取代化石燃料
由於越來越多的供熱來源是依賴電力,而電力中再生能源的比例亦不斷提升,因此,2022至2027年間的再生能源供熱將會提升三分之一,而亦有部份原因是來自政策的推動,尤其是遭遇天然氣危機的歐盟。不過,依目前再生能源供熱技術的發展程度,還無法追上傳統化石燃料所能供熱的數量。
本文為「經濟部產業技術司科技專案成果」
為了增進無線頻譜的使用效率,各國紛紛針對閒置頻譜(White Space)的應用進行討論與發展,除美國已經制定出相關的技術參數與管制規則,並展開全國性的測試外,英國也在多次的公開諮詢與規則修訂後,準備展開全國性的測試應用。 閒置頻譜係指已經指配於特定用途之無線頻段,但因各種因素(如地理地形、人口分布),而在部分地區閒置未使用(即獲得頻譜使用權之業者,在當地並未提供訊號覆蓋);或者因避免頻譜間訊號干擾,而特意保留的空白區塊(以電視頻道為例,為了避免訊號互相干擾,故於頻道1與頻道3播送電視節目,而頻道2則保留空白。)由於無線通訊技術的提升,可藉由天線高度、訊號發射功率、與主要基地臺保持距離等方式,將這些閒置的頻譜區塊進行利用。 由於閒置頻譜屬於已經指配用途、發出執照的頻段,故存在著眾多的既有使用者,閒置頻譜的開放使用必須保障既有使用者不受到有害干擾。英國在2010年至2012年間已經進行多次的公開諮詢與技術發展,故相關的技術參數與管理規則已經原則上確定,但因配合歐盟整體的頻譜政策規劃,故仍暫時不開放商業使用,為了進一步確定White Space在英國的可用性,也為了測試對既有服務的干擾程度,Ofcom決定展開全國性的測試。 本次干擾測試的重點有三: 1. 針對節目製作與特殊事件(program making and special events,PMSE):PMSE泛指獲得無線頻譜使用執照的既有使用者,可能使用無線麥克風、無線攝影機或戶外無線廣播裝置,因此White Space的開放,必須避免對這些既有的使用者造成有害干擾。 2. 數位地面電視(digital terrestrial television,DTT):DTT是無線數位電視,也是最重要的既有使用者,White Space的開放除必須遵照嚴格的技術參數外,也必須避開無線電視台的發射站。 3. 其他鄰近UHF電視頻段的無線服務。 Ofcom指出,各地閒置頻譜的情況不同,如在倫敦地區,對DTT的干擾較低,但格拉斯哥(Glasgow)則相反;而在PMSE的部分,倫敦市中心(如溫布敦球場)則有相當多的節目轉播、無線廣播的使用。Ofcom計畫透過本次測試,瞭解英國各地White Space的使用潛力,屆時將收集英國各地的試點與服務業者的服務品質、功率設定、區域大小與可用的時段,以確保不會發生有害的干擾,整體試驗將持續至2014年夏季。
韓國公平交易委員會推動制定《平臺競爭促進法》韓國公平交易委員會(Fair Trade Commission, FTC)於2023年12月19日宣布將制訂《平臺競爭促進法》(Platform Competition Promotion Act, PCPA),針對市場中大型線上平臺業者,提前認定為具有市場主導地位,禁止提供優惠待遇(preferential treatment)及搭售(tie-sale)等不公平競爭行為,保護小型企業及避免消費者受到大型線上平臺業者壟斷市場的影響。 《平臺競爭促進法》將透過營業收入、使用者數量、市場份額及市場參進障礙等特定條件,認定平臺業者是否具有市場主導地位,被指定具有主導地位的業者則會被禁止從事以下行為:(1)自我偏好行為,禁止平臺業者在平臺上以較競爭者更有利之方式,曝光其本身販售的產品;(2)搭售行為,迫使平臺使用者在購買平臺所提供的產品或服務時,必須同時購買其他產品;(3)限制多棲(multi-homing)或禁止使用者使用其他平臺;(4)要求比其他平臺更優惠的交易條件。 依據韓國《公平交易法》現行法規規定,企業從事不公平競爭行為,最多僅能處以其營業額6%的罰鍰;若於《平臺競爭促進法》制定後,被認定具有市場主導地位的平臺業者從事不公平競爭行為時,將依《平臺競爭促進法》最高可處其營業額10%之罰鍰。平臺業者被委員會指定為具市場主導地位的平臺時,業者仍可在(1)指定前提交意見;(2)指定後提出異議,或以(3)提出行政訴訟等方式保障其權利。 我國公平交易委員會於2022年12月提出數位經濟競爭政策白皮書,內容包含數位經濟下可能面臨的議題及執法立場與方向。近來韓國科技產業與社會經濟發展屢次成為我國相關產業比較對象,未來可持續關注韓國對於跨領域科技產業影響市場公平競爭之治理發展,作為我國因應數位經濟競爭法相關議題之參考基礎。
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。