世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。

  由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:

  1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。

  2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。

  3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。

  4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

相關連結
你可能會想參加
※ 世界經濟論壇發布《贏得數位信任:可信賴的技術決策》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8942&no=67&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
科法觀點
你可能還會想看
大阪框架(Osaka Track)

  2019年6月28日於日本大阪舉行的G20高峰會上,大阪框架(大阪トラック、Osaka Track)再次躍上國際檯面,日本首相安倍晉三在G20高峰會的數位經濟議程當中,倡議建立大阪框架作為資料跨境流通之標準。安倍強調數位化對促進各國經濟發展與創新意義重大,而在數位時代下資料作為重要的成長動力來源,為了能最大化資料運用的可能性與發展潛力,建立一套國際通用的資料流通機制顯然已勢在必行。   「大阪框架」概念的首次提出,源自2019年1月23日安倍首相於瑞士達沃斯所舉辦的世界經濟論壇(World Economic Forum)中所發表的演講,強調資料將是21世紀經濟發展的關鍵資源,透過建立一套國際通用的資料自由流通機制,將有助於確保在數位時代下各種新興科技的創新與發展,不會受到各國管制措施及資料在地化(data localization)政策所阻礙。   「大阪框架」的核心為建立「可資信任的資料自由流通機制」(Data Free Flow with Trust,簡稱DFFT),透過建構國際所共同信任的資料跨境流通機制,將有助於推動包含電子商務在內等各式資料之流通與利用,進而促進數位創新;安倍宣示2019年大阪G20高峰會為大阪框架的起始點,並強調基於此前提出之WTO電子商務共同聲明,期許能透過WTO各會員國的合作,實現建立國際通用的資料跨境流通機制之目標。

英國發布「2017年資料保護法」草案,以符合數位時代之需求

  數位技術改變人們的生活,為使英國人民、企業及組織接受數位時代的變革,並確保英國做好脫離歐盟(European Union)的準備,英國數位文化媒體及運動部(Department for Digital, Culture Media & Sport)修正1998年的資料保護法(Data Protection Act 1998),於2017年9月14日,提交2017資料保護法草案(Data Protection Bill 2017)(以下簡稱:本草案)予上議院審議,以因應數位時代的來臨。   此次本草案修正的方向為: 一般資料處理(§3-26): 一般資料處理係依歐盟的一般資料保護規則(General Data Protection Regulation,簡稱GDPR)為標準,將歐盟GDPR一般資料處理的相關規範之標準制定於此次修正之資料保護法中,並確保健康、社會安全與教育資料等個人資料之安全維護。另對於個人資料的近用與刪除予以規範以強化公共政策,並維護國家安全。 執法程序(§27-79): 拜科技進步所賜,網路世界如遠弗屆,透過網路跨境傳輸、分享、蒐集資料,並非難事,因此,更需要一個強而有力且一致性的個人資料保護規範框架。警方、檢方或司法刑事機關為偵查犯罪行為,而蒐集、處理或利用個人資料,須有明確、正當、合法的執法目的,對於國際間個人資料的交流利用須依明確的程序規範並賦與相當之保護措施,確保英國退出歐盟後,仍可繼續與歐盟各成員國間聯手偵辦重大犯罪案件,以維護國際間之資訊安全。 國家安全(§80-111): 因國家安全事項不在歐盟法(EU Law)規範範圍之列,故GDPR或指令法律(Law Enforcement Directive,LED)之效力不及於各成員國對於國安全之情資蒐集。故英國本次修法參採個人資料保護公約(Convention for the Protection of Individuals with regard to Automatic Processing of Personal Data,又稱現代化公約108(modernised Convention 108))之精神,將情報單位基於維護國家安全之必要蒐集個人資料之規範,明文納入個人資料保護法之適用,以符合國際間的資訊安全規範標準。 資訊委員與執行(§112-168): 資訊委員(Information Commissioner)係指保護資訊權之公共利益、促使公務機關公開資訊與維護個人資料隱私權之獨立政府官員,得主動偵查犯罪,並得通知或教育廣泛的資料管理者,以提高資料保護之標準。繼2010年賦與資訊委員針對金融犯罪之執法權限之後,本草案亦增列意圖還原已去識別化之個人資料、禁止不當揭露個人資料兩種犯罪類型,賦與資訊委員更廣的處理權責。違反資料保護法(如不當揭露個人資料),將處以行政罰責(最高可處1,700萬英鎊/2,000萬歐元罰鍰)。   本草案除建制一個一般資料處理、執法程序及國家安全的資料保護體系外,更加強對於學術研究、金融服務及兒童保護等領域的資料保護,以因應數位時代之變革。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

日本內閣府就著作權法提出部分條文修正案

  日本內閣府於2018年年初提出著作權法部分條文修正案,本次修正集中在合理使用之相關規定,並於5月17日經參議院審議通過。文部科學省在修正概要說明中,提及本次修法放寬合理使用範圍,包括下列幾種情事: 為促進大數據所提供之加值服務或技術創新開發等目的,且不致影響著作之市場價值(如圖書檢索加上部分書籍資訊、論文比對檢索顯示部分原始論文內容)。 老師以教學或提供學生預、複習為目的,利用他人著作所製作之教材,以網路傳輸之方式,上傳後供學生下載使用。 為提供視障者閱讀或因肢體殘障而無法翻閱書籍之人,而將書籍文字以錄音方式呈現。 將美術館或博物館之展出品,製作成可使用於平板電腦之數位檔案,並用於展館導覽上。   上述情形均無須得著作權人之同意。日本政府期待透過本次修法, 在教育推動、便利身障人士及美術館之數位典藏利用等相關數據資訊產業發展上,有效緩解可能產生侵害著作權之問題,故此次條文修正案及後續相關立法動態值得密切注意。

TOP