在美中對抗、烏俄戰爭等地緣政治背景下,世界各國開始重視供應鏈穩定問題。日本在過去幾次供應危機中,逐漸從以化石能源為中心之產業結構,轉向以綠能為主之產業結構,為讓自身能最大限度地利用脫碳相關技術,並在維持能源穩定供應的同時,強化日本產業競爭力,日本經濟產業省於2022年12月23日公布「實現綠色轉型基本方針(草案)」(GX実現に向けた基本方針),提出未來10年政策藍圖,目前正於全國各地辦理意見交流會,徵集民眾意見。
根據上述方針草案,日本未來將採取之措施包括:(1)透過《能源使用合理化法》(エネルギーの使用の合理化に関する法律)徹底推動節能、製造業結構轉型為碳循環型生產體制,並導入蓄電池和控制系統;(2)再生能源成為主力電源,2030年再生能源占比達到36-38%;(3)2030年核能占比達到20-22%;(4)導入氫能、尿素等新能源,於2025年大阪萬博將進行實驗,並參酌外國實際案例,以安全為前提,制定合理之氫能安全戰略及國際標準;(5)整備電力及瓦斯市場,以確保供應穩定;(6)強化資源外交及國際合作,避免因依賴外國資源而產生斷鏈危機;(7)推動蓄電池產業;(8)促進資源循環;(9)運輸部門綠色轉型,包括下一世代汽車、飛機、船舶、鐵路、人物流等;(10)以脫碳為目的之數位投資;(11)住宅、建築物節能;(12)基礎設施投資;(13)碳捕捉技術;(14)食材、農林水產業轉型等。
除上述措施外,日本亦將運用綠色經濟轉型債券(暫定)及各種金融手段,支援綠色轉型前期投資。相關法案預計於下次國會提出,並於兩年內檢討具體措施。
本文為「經濟部產業技術司科技專案成果」
因預期超高速網路在英國將被廣泛佈建,Ofcom於2011年6月啟動諮詢程序,徵詢各界光纖網路備援電池的管制指引,以確保消費者的緊急電話服務;並於同年12月公佈諮詢結果與更新管制指引。 英國境內光纖到終端(FTTP)服務的覆蓋率已達到58%,雖得以提供消費者更高速的上網與影音內容,但卻有停電時無法運作的先天缺陷。由於傳統電話運作所需的電力係經由業者機房透過銅絞線供應,故即便消費者終端停電,仍能緊急電話。因此Ofcom曾於2009年要求公眾電話業者(PATS)確保消費者終端有維持供電4小時以上的備援電池,以保障民眾的身家安全。而此項管制則是納入ECN/ECS業者之第3項一般條件的管制中,業者有因而有遵守的義務。 此次徵詢結果,Ofcom確立了以下兩點管制指引: 1. PATS必須確保提供備援電池:PATS若由消費者選擇是否安裝備援電池,將被認為不符義務。若PATS選擇由消費者負擔更換電池之責任,應提供適切指引並確保易於取得電池;若責任由PATS承擔,則應建立適切處理程序。 2. 備援電池最低供電時數降為1小時:主要理由為英國大部分的斷電事件都不超過1小時;且行動電話相當普及,增加了安全保障。而備援電力降為1小時後,將使其電池更輕便和更易分離,因而更易於產製購買、取得與安裝。不過對於歷史上曾發生斷電超過1小時的家戶,PATS仍有義務確保較長時間的備援電力。
美國及其他CRI成員共同發布國際反勒索軟體倡議聯合聲明,說明其關鍵成果與未來展望美國及其他參與國際反勒索軟體倡議(International Counter Ransomware Initiative, CRI)之50個成員(含國家及國際組織),於2023年10月31日至11月1日召開第三次大會,並且發布聲明表示:應積極建立對抗勒索軟體之集體韌性(collective resilience)、共同合作降低勒索軟體之散布能力、追究相關行為人之法律責任、制裁非法資助勒索軟體之組織、與私部門合力防止勒索軟體攻擊。 CRI於2023年之關鍵成果主要可分以下三個面向: 一、加強資安管理能力 對CRI新成員提供指導及戰術培訓,例如由以色列督導約旦,以確保新成員之資通安全。此外,亦發起利用人工智慧打擊勒索軟體之計畫。 二、促進資訊共享 設立可即時更新之資訊共享平台,使CRI成員得以迅速分享資安威脅指標。如立陶宛之惡意軟體資訊共享計畫(Malware Information Sharing Project, MISP)、以色列及阿拉伯聯合大公國之水晶球平台(Crystal Ball platforms)。 三、反制勒索軟體使用人 CRI發布前所未有之共同政策聲明,闡明成員不應支付贖金,且創設成員間共享之加密貨幣錢包黑名單(blacklist of wallets),以便揭露勒索軟體使用人之非法帳戶,並公開與犯罪組織之金流紀錄。另,CRI於2024年起將持續致力發展前述聲明提及之目標,並優先向潛在成員進行宣導,透過提供量身訂做之資安應變能力培訓,滿足潛在成員之需求。
歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素: 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)