美國聯邦準備理事會、FDIC與OCC發布聯合聲明,提醒關於加密資產流動性風險

有鑑於加密資產(crypto-asset)投資交易潛在風險與市場波動性,美國聯邦準備理事會(Federal Reserve Board)、聯邦存款保險公司(Federal Deposit Insurance Corporation, FDIC)與通貨監理局(Office of the Comptroller of the Currency, OCC)於2023年2月23日發布聯合聲明,提出加密資產增加銀行流動性風險情境,例如穩定幣因市場狀況之變動,導致銀行擠兌使大量存款流出,由於存款流入和流出的規模與時間的不可預測性,加密資產相關資金恐造成流動性風險提高,提醒銀行機構應用現有的風險管理原則審慎因應。

依據聲明內容,有效風險管理作法包括:(1)了解加密資產相關實體存款潛在行為的直接和間接驅動因素,以及這些存款易受不可預測波動影響的程度;(2)銀行機構應積極監控加密資產資金來源存在的流動性風險,並建立有效的風險管理控制措施;(3)應與加密資產存款相關的流動性風險納入應變計劃(contingency funding planning),例如流動性壓力測試;(4)評估加密資產相關實體存款之間關聯性。該聲明並強調銀行機構應建立風險管理機制及維持適當有效之內部控制制度,以因應加密資產高流動性風險,確保經濟金融穩健發展。

相關連結
※ 美國聯邦準備理事會、FDIC與OCC發布聯合聲明,提醒關於加密資產流動性風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8981&no=67&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
科法觀點
你可能還會想看
Like or Not!德國地方法院針對facebook「讚」按鈕功能之判決

  日前有新聞報導,google將推出「+1」按鈕功能,用戶可以點擊該按鈕,向好友推薦特定的搜尋結果,市場上普遍預測google新增此「+1」按鈕功能,主要是用來跟facebook「讚」按鈕(Like Button)競爭。facebook「讚」按鈕功能已成為時下潮流新用語,諸如「給你一個讚」;而且還可以將facebook「讚」按鈕安裝在個人的部落格網頁、文章中。惟facebook的這項功能,一直以來也存在著侵害用戶個人隱私之疑慮。   德國柏林地方法院於今年(2011)03月14日針對facebook「讚」按鈕功能作出一則判決(LG Berlin, Beschluss vom 14.03.2011 - 91 O 25/11)。本案被告經營一項與原告相同的電子商務業務,並在其線上商店網頁中,安裝facebook「讚」按鈕(Gefällt-mir-Button)功能。判決中指出,安裝facebook「讚」按鈕,須運用facebook內建框架(iframe)語法,一旦安裝後,只要是登錄facebook的用戶,同時瀏覽被告網頁時,即使未點擊被告網頁上的「讚」按鈕,用戶的使用記錄都會回傳至facebook。但被告網頁上並未刊登任何有關提醒用戶注意該項資料蒐集、回傳之訊息。   原告因而主張,被告未盡到告知用戶有關個人資料蒐集、加工資訊之義務,已經違反電信服務法(Telemediengesetz,以下簡稱TMG)第13條規定,因而構成不正競爭防止法(Gesetz gegen den unlauteren Wettbewerb,以下簡稱UWG)第4條第11款規定之不允許交易行為。UWG第4條第11款規定「違反本質上涉及交易相對人(Marktteilnehmer)之利益的市場行為(Marktverhalten)有關之法律規定,亦屬於不允許的交易行為(unlautere geschäftliche Handlungen)。」   柏林地方法院認為,TMG第13條本質上係與個人資料保護有關之規定,與涉及交易相對人之利益的市場行為無關,故本案無UWG第4條第11款規定之情形,與不正競爭行為無關,原告之主張因欠缺請求權基礎而敗訴。   然而,值得注意的是,本案法院並未進一步針對被告行為是否違反TMG第13條「有關個人資料保護」之規定提出其見解。TMG第13條係依據「歐盟1995年個人資料保護指令」轉換而來,TMG第13條規定,若網站涉及個人資料的蒐集、加工行為,電信服務提供者(Diensteanbieter)有義務明確告知用戶相關訊息(包括明確告知用戶其可隨時撤回許可相關資料蒐集之表示等)。   爰此,被告於個人網頁安裝facebook「讚」按鈕功能,卻未告知用戶個人資料蒐集、加工之相關訊息,是否違反TMG第13條規定之告知義務,尚有待上級審加以定奪。而判決出爐後,也有專家建議,為避免有侵害個人資料之虞,在社群網站安裝facebook「讚」按鈕時,宜加註個人資料處理、保護之相關聲明。

避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。   Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。   根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。   受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。   Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

論專利公開前機密管理之重要性

美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。 在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。 Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。 在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形: 1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。 2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。 據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。 由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

TOP