美國商務部於2023年3月21日對《晶片與科學法》(CHIPS Act)獎勵計畫中的國家安全護欄條款(guardrails)提出法規草案預告(Notice of Proposed Rulemaking, NPRM),並對外徵詢公眾意見,確保美國和盟友間的技術協調合作,促進共同國家安全利益。CHIPS作為國家安全倡議,以重建和維持美國在全球半導體供應鏈中的領導地位為目標,並確保CHIPS所補助的資金及尖端技術,不會直接或間接使中華人民共和國、俄羅斯、伊朗和北韓等特定國家受益或用於惡意行為,若CHIPS受補助者參與限制交易,政府可以收回全部資金補助。護欄條款對受補助者實施限制說明如下:
1.限制在特定國家擴張先進設施:自獲得補助起10年內,禁止對特定國家或地區的尖端和先進半導體設施為重大投資、協助擴大半導體製造能力。投資金額達100,000美元定義為重大交易,將設施生產能力提高5%為擴大半導體製造能力。
2.限制在特定國家擴建傳統設施:禁止在特定國家擴充半導體新生產線或將傳統半導體設施的生產能力擴大超過10%。若半導體設施的產出「主要服務」於該國國內市場(超過85%),則允許建造新的傳統設施,但最終產品只能在該國家或地區銷售。
3.半導體屬對國家安全至關重要項目:擬將一系列晶片歸類為涉及國家安全,並與國防部和情報局協商制訂清單管制,包括用於量子運算、輻射密集環境,和其他專業軍事能力的新進和成熟製程晶片。
4.加強美國出口管制:透過出口管制和CHIPS國家安全護欄條款,調整對儲存晶片的技術門檻限制並加強控制。對邏輯晶片應用,會設定比出口管制更加嚴格的門檻。
5.限制聯合研究和技術授權:限制與特定外國實體就引起國家安全問題的技術或產品進行聯合研究和技術授權工作。聯合研究定義為由兩人或多人進行的任何研究和開發,技術授權為向另一方提供專利、營業秘密或專屬技術的協議。
本文為「經濟部產業技術司科技專案成果」
墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。 在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。 此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。
NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。 因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。 方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。