OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告

2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。

《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。

《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。

相關連結
你可能會想參加
※ OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9016&no=67&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
美國聯邦地方法院駁回臨床試驗軟體公司Medidata對競爭對手Veeva的營業秘密訴訟

  美國紐約南區聯邦地方法院(S.D.N.Y.)於2022年7月15日駁回了臨床試驗軟體公司Medidata Solutions Inc. (以下簡稱Medidata公司)控告競爭對手Veeva Systems Inc. (以下簡稱Veeva公司)竊取其營業秘密的請求。   原告Medidata公司於2017年1月指控被告Veeva公司陸續挖角其數名離職員工,部份員工離職時私自拷貝公司檔案,其中包含原告的產品研發、商業策略等營業秘密,而被告根據這些資訊開發了和原告相似的軟體,造成其重大損害,因此向被告請求4.5億美元的損害賠償。   被告Veeva公司抗辯雖然這些員工離職時私自保留原告的檔案,但原告在訴訟中並未明確說明哪些屬於該公司的營業秘密,亦即未特定營業秘密標的;此外,即便這些離職員工自行保留的檔案中有包含原告所稱之營業秘密,但原告提出的證據不足以證明被告有不當取用(misappropriation)其營業秘密,僅根據被告有僱用原告離職員工等事實,即推論被告有不當取用。原告試圖透過此模糊和毫無根據的主張,限制產業的創新、競爭、人才流動。   本案歷經五年的纏訟,法院最終駁回原告請求。法官指出,原告在整個訴訟過程中並未明確定義哪些資訊屬於營業秘密,原告似乎認為任何資訊皆屬於其營業秘密,這樣的主張無異於代表任何公司永遠無法挖角其他公司的員工,因為這些員工到新公司任職後所說的任何話,都會間接地揭露他們在之前工作中所學習到的事情,因此駁回原告之訴。   從本案可以觀察到,企業應定期盤點公司內部資訊,明確界定營業秘密範圍,並落實管理及妥善留存相關證據,發生侵害營業秘密爭議時才能有效舉證。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。   本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。   但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

美國加州公共事業委員會通過可再生能源招標機制

  日前,美國加州公共事業委員會(California Public Utilities Commission, CPUC)一致投票通過「可再生能源招標機制」(Renewable Auction Mechanism, RAM)。該委員會期待藉由此種招標機制的上路實施,在加州境內發展各種中小型可再生能源企劃案,並且針對此種企劃案下所生產之再生能源開放最高收購電力為20MW的採購標準。   可再生能源招標機制之實行方式為欲參與該招標機制之企劃案業者,在一年兩次的拍賣期間提出不可議價之拍賣出價,以爭取相關招標企劃案之補助經費。該種企劃案具有1. 符合加州可再生投資組合標準(Renewable Portfolio Standard, RPS)下之20% 投資比例,2.得標企劃案之相關設施地點位於加州境內三大投資人擁有(investor-owned utilities, IOUs)的電力事業服務範圍內,和3. 最高收購再生能源電力為20MW的特性。拍賣出價期間結束後,美國加州公共事務委員會會選擇最小花費之出價企劃案,並與得標之企劃案業者簽署長程契約,而該企劃案業者也會被列於快速發展建設計劃之名單中,以進行後續的計畫發展與相關設備建設。   目前加州相關當局針對小型可再生能源企劃案,傳統上適用一固定費率之電力收購制度(feed-in tariff, FIT)。然而,即便可再生能源招標機制之實施方式與FIT類似,卻沒有能源價格因立法管轄權和其他因素所造成之不確定性存在。故此,在可再生能源招標機制下之企劃案業者可依其所能負擔之價格參與競標,此外亦可防止如西班牙和其他地方所發生之FIT市場過熱之情況產生。   對於可再生能源招標機制之推行及實施,加州公共事業委員會希望其能產生促進競爭、提供最低花費與促進發展相關資源之結果。

澳洲數位轉型局12月發布《政府負責任使用人工智慧政策2.0》,以強化公部門之AI風險管理

2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。 一、適用範圍 政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。 二、政策重點 在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構: (一)制度建置 1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。 2. 人員指定與培訓: 機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。 所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。 3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤 該清單至少包含: (1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。 (2)風險等級(Risk rating):AI使用案例的風險等級資訊。 (3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。 (4)自定義欄位:各機關可根據其需求,自行增加欄位。 (二)AI 使用案例範疇判斷 機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用: 1.對個人、社群、組織或環境造成重大損害。 2.實質影響行政處分或行政決策。 3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。 4.涉及個人、敏感資料等資訊。 (三)進階風險評估 依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。 判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。 澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP