美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。
該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。
當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。
針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。
其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。
最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
電影「神鬼交鋒」(Catch Me If You Can)中,李奧納多飾演的法蘭克阿巴內二世,從16歲開始喬裝為飛機副駕駛、醫師及律師等專業人士,並利用偽造的支票,在數年之間詐取了數百萬美元。電影中所描繪的場景,如今卻在網路世界中真實上演。英國一名現年16歲的青少年,從13歲開始透過網路招搖撞騙,三年來得手的金額高達25萬英鎊。在其落網之後,少年表示之所以從事詐騙,正是受到好萊塢電影的影響。 住在英國的16歲少年,13歲時憑藉著母親遺留的16000英鎊,虛設了第一家網路公司,並對外販售遠低於市場行情甚多的電漿電視。由於網友訂單踴躍,少年還進一步在倫敦市區承租辦公室,並聘請了兩名員工處理訂單。然而大批的買家從未收到訂購的電漿電視,少年除一聲不響地捲走了全部的貨款外,還積欠了所有的辦公室租金及員工薪水。 在食髓知味之下,少年緊接著承租第二間辦公室欲再次如法泡製,但在得手後溜之大吉前為房東報警查獲,不可思議的是少年獲得交保後隨即於網路上開設另一家虛擬文具行繼續詐騙,直到最近終於為警方逮捕。總計少年在這些年來詐騙所得超過25萬英鎊,遭其詐騙者,甚至包括了英國知名的哈洛德百貨(Harrods)。目前少年正面臨詐欺及其他罪名的控訴。
Comcast可能因違反FCC之網路開放原則而受罰美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)主席Kevin Martin於今年(2008)7月11日表示,就Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋BitTorrent之流量違反FCC之網路開放原則一案,他將建議FCC要求Comcast揭露其相關行為,並提醒用戶其過濾流量之行為與方式。 2007年11月時,Free Press、Public Knowledge、ConsumersUnion等消費者權益促進團體向FCC投訴有線電視系統業者Comcast故意阻擋P2P流量的行為已經違反FCC於2005年時發佈之網路開放原則。該網路開放原則包括消費者有權透過網路接近任何合法內容;消費者可透過網路自由使用任何合法之應用服務;消費者可自由將任何合法之設備與網路連接;消費者有權在各網路、應用服務或內容提供者間自由選擇。 針對前述投訴,一開始Comcast矢口否認有任何阻擋P2P資料流量之行為,隨後Comcast則改口其對於P2P資料流量之「延遲」乃是一種合理的網路管理(reasonable network management),並不違反FCC之原則。 嗣後,FCC於今年(2008)1月份公開徵求公眾意見,並持續就此一申訴進行調查。Comcast亦在6月份公布新的網路管理政策,其表示未來將不再針對特定伺服器進行網路管理,而是改以網路流量使用較高之用戶為目標,以過濾垃圾郵件、偵測惡意程式或流量以防止病毒散佈、限制或暫時延遲P2P資料流量等方式以控制或限制網路使用。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
美國白宮頒布有關於太空系統的網路安全原則《太空政策第5號指令》由於美國近年來透過太空系統進行通訊、定位導航、太空探索及國防等多方面應用,為避免太空系統受到網路威脅,白宮於2020年9月4日發布《太空政策第5號指令》(Space Policy Directive-5,SPD-5),該指令主要關注太空系統的網路安全,將現有地面使用的網路安全政策應用在太空系統中,旨在提高美國太空設施網路安全。 SPD-5指令建立以下五項太空網路安全原則,作為指導政府及民間單位提高太空系統網路安全的方法: 一、太空系統及相關軟硬體設施,應使用以風險等級為基礎的方式,進行開發運作並建構其網路安全系統。 二、太空系統營運商應制定太空系統網路安全計畫(應包含防止未經授權的存取行為、防止通訊干擾、確保地面接收系統免受網路威脅、供應鏈的風險管理等功能),以確保能掌握對太空系統的控制權。 三、監管機構應訂定規則或監管指南來實施SPD-5指令的原則。 四、太空系統的營運商及其合作對象應共同推動SPD-5指令,並盡力減少網路威脅的發生。 五、太空系統營運商在執行太空系統網路安全的保護措施時,應管理其風險承擔能力。 儘管SPD-5指令並未指示特定機構執行上開原則,但已有美國聯邦通信委員會將SPD-5之網路安全原則納入其法規中,未來SPD-5指令將有可能作為美國太空網路安全措施及法規訂定的基礎。