美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。

該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。

當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。

針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。

其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。

最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

相關連結
※ 美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9036&no=67&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
2030年數位羅盤:數位十年的歐洲之路

  由於新冠肺炎疫情爆發,反應了歐盟對非歐洲國家數位技術的依賴,歐盟為扭轉此局勢,於2021年3月9日提出「2030數位羅盤」(2030 Digital Compass)計畫,擬定至2030年歐洲成功實現數位轉型的願景、目標和途徑。 歐盟預計在2030年前將計畫中4個核心目標轉化為具體政策: (一)擁有數位知識之公民及數位專家:  1.具備基本數位知識之人口至少達到80%。  2.應有2000萬名以上的資訊通訊技術專家,且促使更多女性進入此產業。 (二)安全和永續發展的數位基礎設施:  1.所有歐洲家庭都應擁有Gigabit網路,且所有人口密集區都應被5G所覆蓋。  2.歐洲半導體的產量應占世界的20%。  3.歐盟應部署1萬個氣候中立的高度安全邊緣節點(edge node)。  4.於2025年前開發出歐洲第一台量子電腦。 (三)企業數位化轉型:  1.75%的歐洲企業應使用雲端運算服務,大數據和人工智慧。  2.超過90%的歐洲中小企業應達基本數位密集強度。  3.擴大創新規模並改善融資管道,使歐盟的獨角獸企業數量翻倍。 (四)公共數位化服務:  1.於線上提供所有主要的公共服務。  2.所有歐洲公民均能使用電子病歷。  3.80%的歐洲公民應使用電子身份證。   歐盟委員會將基於上述目標,期於2021年第3季前提出相關數位政策計畫,並於2021年底前與其他相關機構取得決定性進展。

地方創生

  「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。   自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含: 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。   地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。

日本個人資料保護法修正案允許變更利用目的引發各界議論

  日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。   本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。   本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。   目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。

2016年生物支付技術將可能取代傳統支付型態

  根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。   即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。   例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。 依據BIPA針對生物辨識定義及蒐集規範: 1.第10條: 生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。 2.第15條(a): 規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。 3.第15條(b)(1): 蒐集生物辨識資訊應告知當事人。   Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。   觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。

TOP