國土交通省於2023年5月12日公布「道路設置電動車充電設施指引」(電気自動車等用充電機器の道路上での設置に関するガイドライン,簡稱本指引),回應經濟產業省於2021年6月所公布「2050年伴隨碳中和之綠色成長戰略」(2050年カーボンニュートラルに伴うグリーン成長戦略),加速電動車充電設施建置,以達推動電動車普及之目的。依日本《道路法》第32條規定,在道路上或路邊設置充電設施,需向地方行政機關申請設置許可,故本指引整理機關審查時應注意事項,重點如下:
一、充電設施設置場所:應注意是否配合當地需求整合停車場,並應考量行人、自行車、車輛等之通行動線,避免影響用路人通行。
二、審查標準:審查時需注意充電設施本身與所在位置之安全性;申請人是否具備管理、維護充電設施之能力;充電設施是否提供不特定多數人使用;充電設施設置期間以5年為原則,期滿應回復原狀等。此外,若申請人係出於營利目的申請設置充電設施,應限於設置地點不會顯著影響交通或道路完整性,且可增進用路人便利等情形。
三、其他:為確認充電設施安全性,地方行政機關可額外要求申請人提出文件說明,但應避免造成申請人負擔。
本文為「經濟部產業技術司科技專案成果」
日本政府曾於2017年6月9日閣議公布之《未來投資戰略2017》(未来投資戦略2017),以及5月19日「小型無人飛行載具相關部會連絡會議」(小型無人機に関する関係府省庁連絡会議)公布之《空中工業革命時程表》(空の産業革命に向けたロートマッフ)中,提出「2018年運用於山間地區運送貨物、2020年可正式在都市內安全運送貨物」之目標。故國土交通省與經濟產業省於同年10月4日共同設立「無人飛行載具於目視範圍外及第三者上空等飛行檢討會」(無人航空機の目視外及び第三者上空等での飛行に関する検討会),並於2018年9月18日公布《無人飛行載具運送貨物自主指引》(無人航空機による荷物配送を行う際の自主ガイドライン,以下稱「本指引」)。本指引目的係制定安全運輸貨物所應遵守事項、提高社會對無人機運送貨物之信賴,以求提升運輸效率、節省人力成本。適用對象為非屬航空法第132條規定須申請許可之空域,但於目視範圍外飛行並運送貨物之無人機。 本指引公布後,國土交通省與環境省於相關提案中選出5個人口非密集區,以進行之無人機運輸貨物(ドローン物流)實驗。首先,在2018年10月22日長野縣白馬村,無人機自海拔1500公尺處運送最重達8公斤的食品至海拔1850公尺處的山莊,單程耗時6分鐘,共往返3次,皆無發生明顯失誤。日本郵政之提案則在同年11月7日,從福島縣小高郵局成功運抵位於南方約9公里處的浪江郵局,耗時16分鐘。本次實驗係首次成功於目視範圍外運輸物品,實驗途中均未設置監看人員,僅以電腦掌握兩地衛星定位資訊,並監看無人機上搭載相機傳回的畫面。日本郵政計畫未來1年內,每個月將有6天以無人機運送2公斤內的傳單等物品。國土交通省與環境省計畫於年底前完成另外3個地區的實驗,並統整結果驗證是否能解決山間等人口非密集區,因貨物乘載率低而運輸效率低落,以及降低排碳量等課題。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
執法部門無搜索令要求提供手機位置記錄並未違憲美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」 本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」 2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。
避免昂貴訴訟成本,微軟參與專利審查團隊微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。 Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。 根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。 受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。 Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。