用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

資訊工業策進會科技法律研究所
2023年09月08日

生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。

惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。

壹、事件摘要

Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。

R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]

貳、生成式AI應用之潛在風險

雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]

一、能源使用及對環境危害

相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]

二、能力超出預期(Capability Overhang)

運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。

三、輸出結果有偏見

生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。

四、智慧財產權疑慮

生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。

五、缺乏驗證事實功能

生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。

六、數位犯罪增加與資安攻擊

過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。

七、敏感資料外洩

使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。

八、影子AI(Shadow AI)

影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。

參、事件評析

在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]

當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。

雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。

[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).

[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).

[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).

[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).

[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research  (last visited Aug. 29, 2023).

※ 用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9050&no=67&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
促進頻譜使用效率--美國啟動獎勵拍賣機制

  為了滿足行動寬頻時代對於無線頻譜的需求,美國規劃了多種不同的頻譜釋出、分享或共用的政策,以增加可用的頻寬或提高使用效率,其中針對既有的數位無線電視服務所使用的頻譜,則提出「獎勵拍賣機制(incentive auctions)」。此機制最初於2010年由FCC提出,其特色在於具備自願性及市場導向兩項內涵。本次美國啟動獎勵拍賣機制,主要目的為藉由新業務之頻譜拍賣,將所得之部分標金作為誘因,以鼓勵廣播電視業者繳回原有頻譜使用權,並促進美國寬頻計畫(National Broadband Plan)之發展。目前針對此機制,美國國會已於2012年2月22日正式授權FCC執行。而FCC則於2012年10月2日發布FCC 12-118法規制定建議通知(Notice of proposed rulemaking, NPRM),並依據美國「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012)之授權,針對廣播電視頻譜獎勵拍賣機制進行商擬,並廣徵各界建議。   本次廣播電視頻譜獎勵拍賣機制主要可區分為三個步驟,(一)反向拍賣(reverse auction),指廣播電視業者藉由投標之方式,標得原持有頻段之自動放棄權。(二)頻譜重組(reorganization or repacking),此步驟是為了讓廣播電視頻譜藉由重組後,可釋出部分的超高頻(UHF)頻段以作為其他業務使用。(三)正向拍賣(forward auction),即針對頻譜進行重新授權,對此FCC提出將以更為彈性的概念使用頻譜。   目前整體拍賣機制尚處發展階段,各步驟內部運作應如何規劃,FCC仍積極尋求外界建議。不過從FCC所提出的五項關鍵政策目標(key policy goals)中,亦可歸納出未來整體機制的規劃方針包含(一)提升頻譜效能,期望未來得以5MHz為拍賣單位,並且支持各類無線行動技術如W-CDMA、HSPA以及LTE技術之發展、(二)確保不干擾鄰近國家頻譜之使用、(三)發展各頻段之通用性(interchangeable),促進各頻譜區段在重新配置後具備可替換性、(四)刺激頻譜回收達理想數量,以及(五)促進頻譜技術中立概念。面對美國在提升頻譜使用效率策略上又一記新嘗試,即便目前仍有許多不確定因素亟待突破,但就促進頻譜使用效率而言,亦不失為頻譜交易機制之外,另一可參考之方向。

聯合國潔淨能源部長會議(CEM)宣示加強國際潔淨能源發展合作及工作任務

  隸屬於聯合國之下的潔淨能源部長會議(Clean Energy Ministerial, CEM)於2012年4月25-26日於英國倫敦舉行第三次會議,共有來自23國家的代表以及私人代表參與,針對潔淨能源的議題予以討論,探討如何加強各國政府間的合作,以推動公部門與私人對於潔淨能源發展的參與。此一會議中承諾支持由聯合國秘書長倡議的「全面永續能源(Sustainable Energy for All, SE4ALL)」所設定的2030永續能源目標,承諾改善能源效率、提升再生能源、及確保能源利用。相關內容包括: 1.提高能源效率   有16位參與CEM的政府代表亦參與「超高效的設備和器具部署計畫(Super-efficient Equipment and Appliance Deployment , SEAD)」,承諾將推動能源效率,以幫助消費者和企業獲得節能器具和設備。此一努力將能使消費者在未來二十年節省超過一兆美元,並且估計自2012年至2030年能減少110億公噸的二氧化碳排放。具體措施包括推出全球效率獎章的競賽(Global Efficiency Medal competition)、藉由公私合作來推廣高效能產品、加速照明設備在全球市場的轉型、建立全球通用的產品識別系統等。 2. 促進再生能源及其他低碳能源的發展   例如英國宣布投入六千萬英鎊的資金於碳捕獲(carbon capture)與儲能技術的發展。此外,丹麥,德國和西班牙發布了一個全球性的再生資源地圖,標示世界各地的太陽能和風能能源的潛力,並基於能源價格、財務成本及獎勵計劃,來評估不同國家對這些資源開發的成本效益。 3.確保能源的利用   例如義大利和美國宣布發展印度的照明計畫,將在2015年底提供200萬人現代照明服務。又,在非洲照明方案,已經提供250萬人民離網照明裝置(off-grid lighting devices)。這些計畫均附屬於「全球照明和能源利用合作組織(Global Lighting and Energy Access Partnership, Global LEAP)」,該組織宣布將對於缺乏現代能源選擇的消費者,推動低成本且確保品質的解決方案。 4. 更多跨領域舉措   包括有11個國家同意支持由澳洲和美國為首的聯合國能源計畫;氣候工作基金會(ClimateWorks Foundation)提供三年1百萬美元的技術諮詢報告於「潔淨能源解決方案中心(Clean Energy Solutions Center)」;美國與麻省理工學院(Massachusetts Institute of Technology, MIT)合作的潔淨能源計畫(Clean Energy program)中「教育與授權參與(Clean Energy Education & Empowerment Initiative, C3E)」的部分,由20多名專業婦女同胞擔任「潔淨能源大使(C3E Ambassadors)」,獎勵其在潔淨能源領域的成就等。

英國財政部公告公眾諮詢結果回應,因效益不足決定停止推動綠色分類標準

英國財政部(HM Treasury)於2025年7月15日回應有關綠色分類標準(green taxanomy)實效性之公眾諮詢結果並發布評估結論。本諮詢於2024年11月啟動,旨在評估綠色分類標準能否有效達成「引導資金投入淨零轉型」及「預防漂綠行為(greenwashing)」之兩大目標。 以下說明利害關係人回饋意見重點內容: (1)引導資金投入淨零轉型 金融機構受訪者多認為分類標準並非引導資金流向之關鍵政策工具,僅能作為投資考量之其中一項參考依據,而對最終決策影響有限;並認為就特定產業制定去碳路線圖,同時闡明未來投資監理法規、補助獎勵計畫、稅制變革等,始為有效引導淨零轉型投資之政策措施。 (2)預防漂綠行為 跨國企業受訪者擔憂英國建立自身分類體系將導致國際標準更加零碎,同項經濟活動於不同司法管轄區可能被歸類為不同屬性,反而增添漂綠風險;並認為既有政策規範足以應對漂綠問題,如「競爭與市場管理局」(Competition Markets Authority, CMA)與「廣告標準管理局」(Advertising Standards Authority, ASA)為確保綠色聲明正確性所發布之相關指引等。 綜上所述,英國政府於審酌相關意見後,決定不再繼續推動綠色分類標準。於資源有限下,政府將專注於落實產業界認為對於加速淨零轉型投資具更高優先性與影響力之政策,同時持續評估是否需採取更多措施以預防漂綠行為。

日本IT總合戰略本部提出數位程序修正法案,簡化行政流程並提高使用便利性

  日本IT總合戰略本部於2019年3月18日公告提出「數位程序法案(デジタル手続法案)」,本法案係集結多部法律修正案之包裹法案,包含行政程序網路化法(行政手続オンライン化)、居民基本簿冊法(住民基本台帳法)、官方個人認證法(公的個人認証法)、及個人編號法(マイナンバー法)。該法案的目的,在於應用資通訊技術簡化行政運作並提高使用便利性,藉此增進行政效率,因此在相關法令中明文擬定行政數位化的基本原則,增修推動行政程序線上辦理的共通規定與配套措施,賦予行政機關應履行的各項法定義務,同時為落實各領域推展行政數位化的規劃,制定個別具體規範。   於制定行政數位化基本原則、與增訂推動行政程序線上辦理的共通規定與配套措施之部分,主要為修正原「行政程序網路化法」,更名為「數位行政推進法(デジタル行政推進法)」,定位該法目標與功能為促進社會整體數位化,使國家、地方公共團體、民間業者、國民與其他人於從事各種社會活動時,均能享受到資通訊技術帶來的便利性。該法要求的基本原則,包含數位優先(digital first, 藉由數位手段一體化完成各項手續或服務)、免去重複提供資訊(once only,曾提供的資訊得被保留供再次使用)以及一步到位(connected one-step,謀求複數的程序或服務簡化為一步到位)。至於推動行政程序線上辦理的共通規定與配套措施,則包含要求地方公共團體須致力於達成行政程序線上辦理的目標,授權主管機關訂定得辦理網路身分認證與支付手續費等數位化法定程序、要求行政機關提出實現行政程序線上辦理與廢除紙本附件流程的資訊系統整備計畫等。   另一方面,針對各領域推展行政數位化的具體規範,該法案預備修正「居民基本簿冊法」、「官方個人認證法」以及「個人編號法」,主要內容包含:1. 保存個人電子認證資訊等相關官方服務的適用對象擴及旅外國民,同時得發行旅外國民之官方個人認證之電子證明書與個人編號卡,使其得透過網路使用相關的行政電子化服務;2. 長期且確實保存本人過去的居住遷徙紀錄,增設住民票註銷後原有相關記錄仍予以保留的「除票」制度,使國民過去的居住地紀錄,不會因為變更戶籍、依法註銷原戶籍地的住民票而消失;3. 過去使用官方個人認證之電子證明書與個人編號卡時須輸入密碼,官方個人認證法修正案則授權主管機關增設其他不需輸入密碼的使用方式,以呼應擴大電子證明書使用範圍的政策規劃;4. 賦予個人編號IC卡(マイナンバーカード)作為獨立有效之身分證明文件的地位,廢止原依法需和個人編號IC卡併用的紙本通知卡(通知カード)制度,免去個人住所等基本資料變更時,需同步更正通知卡紙本登載資訊的行政程序,減輕主管機關負擔。

TOP