用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限
資訊工業策進會科技法律研究所
2023年09月08日
生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。
惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。
壹、事件摘要
Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。
R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。
貳、生成式AI應用之潛在風險
雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]:
一、能源使用及對環境危害
相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。
二、能力超出預期(Capability Overhang)
運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。
三、輸出結果有偏見
生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。
四、智慧財產權疑慮
生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。
五、缺乏驗證事實功能
生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。
六、數位犯罪增加與資安攻擊
過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。
七、敏感資料外洩
使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。
八、影子AI(Shadow AI)
影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。
參、事件評析
在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。
當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。
雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。
[1] Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.).
[2] Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023).
[3] Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023).
[4] Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023).
[5] Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。 該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。 NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。
澳洲政府發布「急診醫師使用我的健康紀錄指引」提供急診醫師規範遵循2019年2月澳洲政府依據「我的健康紀錄法」(My Health Records Act 2012),執行全國國民納入「我的健康紀錄系統」(My Health Record System)(下稱系統)之政策,有將近9成的國民被納入系統,為解決急診醫師在緊急救治時,需查看病患醫療資訊的需求;澳洲數位健康局(Australian Digital Health Agency, ADHA)於2019年11月發布了一項全國倡議的政策:急診醫師能使用我的健康紀錄系統,在急迫情形下即時做診斷。因此澳洲健康安全與品質委員會(Australian Commission on Safety and Quality in Health Care)與澳洲急診醫學院(Australasian College for Emergency Medicine, ACEM)共同訂定「急診醫師使用我的健康紀錄之指引」(Emergency Department Clinicians’ Guide to My Health Record)(下稱指引)提供急診科醫師參考,說明如下: 原則上只有病患之家庭醫師或主治醫師才能進入系統查看病患的醫療資訊,其他未經同意的醫師不得隨意查看病患的醫療資訊,但若病患發生急救狀況時,則允許急診醫師得使用系統查看病患之醫療資訊,例如:使用藥物資訊、各醫師之醫療診斷書、照顧資訊、處方簽紀錄,病患用藥歷史、住院紀錄、家族病史、專家建議信(Specialist letters)、器官捐贈與預立醫療決定(Advance care plans)、病理診斷、病人自行輸入的資訊,例如過敏反應等,協助急診醫師能使用病患就醫紀錄迅速的做診斷;允許急診醫師得直接查看病患之醫療資訊,也解決急診醫師在救治時,無法即時與病患之家庭醫師聯繫問題。另外,系統之病歷電子化也為急診醫師帶來益處,例如:醫療資訊的合併,整合病患的就醫資料、減少不必要及重複的檢查,即時傳遞醫療資料等。此外,為了保障國民之資訊自主,醫師必須尊重病患的權利,例如病患得使用取消功能來刪除病歷資訊、限制特定醫療人員或醫療機構查看、限制查看資料的類型等。 這項指引使急診醫師能更了解如何使用系統、在緊急救護時,得隨時能查病歷資料做出最佳的處置、系統化的便利性為急診醫師節省許多處理時間,並促進與提升醫療品質。
日本制定綠色轉型基本方針草案,規劃未來10年政策藍圖在美中對抗、烏俄戰爭等地緣政治背景下,世界各國開始重視供應鏈穩定問題。日本在過去幾次供應危機中,逐漸從以化石能源為中心之產業結構,轉向以綠能為主之產業結構,為讓自身能最大限度地利用脫碳相關技術,並在維持能源穩定供應的同時,強化日本產業競爭力,日本經濟產業省於2022年12月23日公布「實現綠色轉型基本方針(草案)」(GX実現に向けた基本方針),提出未來10年政策藍圖,目前正於全國各地辦理意見交流會,徵集民眾意見。 根據上述方針草案,日本未來將採取之措施包括:(1)透過《能源使用合理化法》(エネルギーの使用の合理化に関する法律)徹底推動節能、製造業結構轉型為碳循環型生產體制,並導入蓄電池和控制系統;(2)再生能源成為主力電源,2030年再生能源占比達到36-38%;(3)2030年核能占比達到20-22%;(4)導入氫能、尿素等新能源,於2025年大阪萬博將進行實驗,並參酌外國實際案例,以安全為前提,制定合理之氫能安全戰略及國際標準;(5)整備電力及瓦斯市場,以確保供應穩定;(6)強化資源外交及國際合作,避免因依賴外國資源而產生斷鏈危機;(7)推動蓄電池產業;(8)促進資源循環;(9)運輸部門綠色轉型,包括下一世代汽車、飛機、船舶、鐵路、人物流等;(10)以脫碳為目的之數位投資;(11)住宅、建築物節能;(12)基礎設施投資;(13)碳捕捉技術;(14)食材、農林水產業轉型等。 除上述措施外,日本亦將運用綠色經濟轉型債券(暫定)及各種金融手段,支援綠色轉型前期投資。相關法案預計於下次國會提出,並於兩年內檢討具體措施。
M2M時代下的資料保護權利之進展-歐盟與日本觀察