資訊揭露與市場競爭評估–
研析英國水平協議指引中之資訊交換
資訊工業策進會科技法律研究所
2023年09月23日
英國競爭與市場管理局(Competition and Markets Authority,CMA)於2023年8月16日發布《1988年競爭法第一章禁令適用於水平協議之指引》(Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements,以下簡稱CMA水平協議指引),以規範實際或潛在競爭者間之協議[1]。CMA水平協議指引提供事業擬定協議內容的參考,事業間於業務合作的同時,亦能符合法遵之要求,以維護市場公平競爭。
壹、事件摘要
英國CMA水平協議指引解釋競爭法之適用,尤其是《1998年競爭法》(Competition Act 1998,CA98)第1章禁止水平協議。2023年1月1日,《1998年競爭法(專業協議集體豁免)2022年指令》(SABEO)與《1998年競爭法(研發協議集體豁免)2022年指令》(R&D BEO)生效,於2023年8月16日發布之CMA水平協議指引,協助事業評估特定類型的水平協議是否受益於SABEO和R&D BEO,和遵守競爭法之相關規範[2]。申言之,CMA水平協議指引協助事業評估其所簽訂之協議內容,是否屬於法規範豁免之類型,且合乎競爭法之規定。
CMA水平協議指引說明研發協議[3]、生產協議[4]、採購協議[5]、商業化協議[6]和標準化協議[7]之適用與範例。鑒於大數據分析與機器學習需使用大量的資料;而大數據分析的結果,或機器學習的應用,將影響決策的形成,資訊交換因而更顯重要[8],CMA水平協議指引亦引導事業為合理的資訊交換。
資訊交換不僅為競爭市場的共同特徵,在一般的情形亦有利於消費者;例如資訊交換有助於解決資訊不對等而提升市場效率,事業能藉由比較最佳實踐方案,以提高內部效率;能減少庫存以節省成本,並處理不穩定的需求;或藉由演算法以開發新的產品或服務;[9]或減少搜尋成本,以提供消費者利益[10]。依據實際情況,資訊交換可以是有利於競爭,競爭中立或限制競爭[11]。換言之,競爭市場中適當的資訊交換,有助於事業降低成本,提升效率。
貳、重點說明
CMA水平協議指引第8章為資訊交換(Information Exchange),目的即在指導事業為資訊交換的競爭評估[12]。資訊交換是否會引發限制競爭之效應,取決於市場的特性,包含[13]:
(1)市場透明度:越透明的市場,競爭之不確定性越小[14]。
(2)市場集中度:若市場中僅有少數事業,則易於達成共識,與控制市場偏差。若市場高度集中,則訊息的交換,將有助於事業了解競爭者的市場地位和策略,而扭曲競爭,甚而增加共謀(collusion)的風險;若市場分散,則競爭者間資訊的傳播與交換,對市場而言,可能為競爭中立或有利於競爭[15]。
(3)參進障礙:此使外部競爭者無法破壞市場中的共謀結果(collusive outcome)[16]。
(4)市場穩定度:在供需穩定的市場,亦可能有共謀的結果;而需求的波動、市場中事業內部的大幅成長、新事業的參進、顛覆性創新(disruptive innovation),均可能顯示市場的穩定度不足,需提升交流,以促進競爭[17]。
競爭對手間的資訊交換,依據共享資訊的內容、目的、法律與經濟背景,可能為侵權而應受限制。包含與競爭對手交換事業目前或未來的訂價方向、生產能力、商業策略、針對需求的規劃,對未來銷售的預測,和在特定市場上的財務狀況與經營策略[18],提供價格資料而能預測事業未來的行為,和與競爭對手交換潛在參進者所提出之計畫要點[19]。申言之,事業應避免資訊所生之侵權行為;並需考量市場的特性,以評估資訊交換對競爭之限制。
參、事件評析
CMA水平協議指引第8章,提供事業間交換資訊的相關建議。為提升資訊交換對市場的效益,以資訊內容而言,事業須考量資訊交換的目的,以及藉由收集資訊、確認資訊交換的參與者係使用其具有所有權的原始資料、使用歷史資訊、僅交換與達到目標相符且必要的資訊,而能減少具有商業敏感性質的內容[20]。換言之,事業須避免機敏資料的流通,並具有使用資料的權限。
以資訊應用的角度,事業應採取措施,以控制資訊的交換與使用,包含減少頻繁的交換,以特定團隊(clean team)或信託方式進行資訊交換,或使用資料池(data pool)以確認近用資料之所有權[21]。亦即事業須確認資料的來源,與交換資料的相對人,並能管理資料流通的過程。
綜上所論,足夠的資料量,使大數據分析的結果能充分反映市場的實際需求,事業的決策和布局亦更為準確,適當的資訊交換有助於提升事業的市場競爭力。CMA水平協議指引協助事業評估資訊交換對競爭之影響,事業之資訊管理,除內部資訊之維護外,亦包含外部資訊之交換,如資訊交換之必要性,與資訊近用之權限、方式等,或可提供臺灣事業參考。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
[1]Guidance on Horizontal Agreements, GOV. UK, Competition and Markets Authority, https://www.gov.uk/government/publications/guidance-on-horizontal-agreements (last visited Aug. 23, 2023).
[2]CMA COMPETITION & MARKETS AUTHORITY, Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements, CMA184 (Aug. 2023), 6, at 6, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1178791/Horizontal_Guidance_FINAL.pdf (last visited Sept. 01, 2023).
[3] Id., at 35 below.
[4] Id., at 83 below.
[5] Id., at 124 below.
[6] Id., at 145 below.
[7] Id., at 203 below.
[8] Id., at 165.
[9] Id.
[10] Id., at 166.
[11] CMA Competition & Markets Authority, supra note 8.
[12] Id.
[13] Id., at 188.
[14] Id.
[15] Id., at 188-189.
[16] Id., at 189.
[17] Id.
[18] Id., at 190.
[19] Id., at 191.
[20] Id., at 201.
[21] Id.
歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
歐盟執委會發布關於歐洲境內資料流監控之新研究歐盟執委會(The EU Commission)於2022年2月3日發布了一項研究,其繪製並預估歐盟27個成員國以及冰島、挪威、瑞士和英國等國家彼此之間的主要雲端基礎設施的資料流量。該研究概述了各級產業、位置、企業規模和雲端服務類型的雲端資料流入和流出的流量和類型。政策、決策者、商業領袖與公共行政部門可以將其作為參考,以支持對未來貿易協定、工業決策和雲端投資的決策。 在歐盟的歐洲資料戰略中,認識到獲取有關資料流的經濟情報的戰略重要性,因此提出了資料流戰略分析框架的發展。為了實現這一關鍵行動,歐盟執委會開展了上述關於繪製資料流的研究,首次開發和測試了一種全新、自我維持與可複製的方法,從而產生了資料流可視化工具,用於測量、映射和分析歐洲31個國家與地區的各級產業、地理和企業規模的雲端資料流。而該資料流可視化工具中顯示的資料預計將每年更新一次。使用的資料收集來源從官方統計資料等主要來源到調查和訪談等次要來源。 該工具得以讓歐盟執委會: 一、繪製和估計歐盟27個成員國(即歐盟內部資料流)和冰島、挪威、瑞士和英國(即歐盟外資料流)的雲端計算領域主要資料流的數量 二、預測至2030年的資料流出 三、分析各產業、公司規模和雲端服務類型的資料流量 該研究顯示2020年最大的資料流來自醫療衛生產業,而德國的資料流入量最大。該報告還估計,到2030年,來自歐洲企業的資料流量將是2020年的15倍。 作為資料流市場關鍵層面之一,透過進一步調查資料趨勢,將協同即將出現的資訊法案打造一個更加生動、動態和流動的雲端市場。
日本特許廳利用人工智慧審查專利與商標申請日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。 JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。 AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國國家製造創新網絡2016年度報告依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。 國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。 我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。