新加坡智慧財產局發布2023年智財調查,分析企業無形資產運用現況

新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2023年9月4日發布《2023年智慧財產調查》(Singapore IP Survey 2023),調查結果顯示,企業最重視的智慧財產為品牌、技術/製程、機密資訊。

為瞭解企業對無形資產(Intangible Assets, 以下簡稱IA)和智慧財產權(Intellectual Property, 以下簡稱IP)的看法和運用現況,以制定強化企業競爭力之智財政策,新加坡政府自2021年發布《2030年智慧財產戰略》(Singapore IP Strategy 2030, SIPS 2030)起,每2年發布一次智財調查。本次調查於2023年2月至3月間進行,對象為新加坡500多家企業,調查結果顯示,企業最重視的前三種IP類型依序為:

1. 有35%的企業表示擁有強大品牌(strong brand)相當重要。
2. 有32%的企業認為擁有新技術及/或新製程(new technology and/or process)相當重要。
3. 有31%的企業認為擁有機密資訊(confidential information)相當重要。

此外,有15%的企業表示,其商業價值的主要收益來自於其IA/IP;且所有受訪企業中有不少企業表示IA/IP有助於提升公司績效,包含:

1. 有17%的企業認為有助於「吸引更多商業合作夥伴」;
2. 有17%的企業認為有助於「提升商業競爭力」;
3. 有15%的企業認為有助於「拓展國際市場」;
4. 有14%的企業認為有助於「增加獲利」。

再者,有80%的企業期待有更多機會運用IA/IP獲得融資。同時,有92%企業在進行相關智財活動(IP activities)時未申請任何政府補助,如新加坡企業發展局(Enterprise Singapore, ESG)的企業發展補助(Enterprise Development Grant, EDG),其中有50%以上的企業表示是因為不清楚相關補助資訊。

最後,僅有15%的企業對其IA/IP進行單獨評價(standalone valuation),而未與其他資產合併評價,但其中僅不到一半是委託評價分析師(Certified Valuation Analyst, CVA)進行。

根據調查結果,新加坡政府認為企業雖擁有大量的IA/IP,但尚未瞭解其價值,導致無法有效地將其IA/IP商業化。因此,新加坡政府於2023年9月4日同時發布《無形資產揭露框架》(Intangibles Disclosure Framework, IDF),鼓勵企業以系統化方式主動對外揭露所持有之IA/IP,藉此協助企業創造更高的價值。我國資策會科法所亦從2013年開始,每2年針對國內上市上櫃公司調查智財管理需求及現況;2021年調查報告顯示,86%的企業已進行智財布局、84%企業有配置智財人員、94%企業有編列智財經費等,顯示我國企業對於智財管理及策略愈來愈重視。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 新加坡智慧財產局發布2023年智財調查,分析企業無形資產運用現況, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9067&no=65&tp=1 (最後瀏覽日:2025/07/27)
引註此篇文章
科法觀點
你可能還會想看
英國「數位紅利」頻譜管理政策簡介

歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險

  歐盟智慧財產局(European Union Intellectual Property Office)之智庫「歐盟智財侵權觀察平台」(the European Observatory)於今(2021)年2月出版《防偽技術指南》(Anti-Counterfeiting Technology Guide,下稱本指南),本指南全面介紹目前市面上防偽技術的內容,技術區分成電子型、標記型、化學型、物理型、機械及數位媒體型等五大防偽技術類別,供所有有興趣了解或欲執行防偽技術的各規模、各領域企業們參考。   仿冒為全球性問題,幾乎威脅到了各領域行業的營運與生存,而全球仿冒品數量在互聯網時代之下,以每年增長15%的驚人速度上升中,已嚴重侵害了企業的品牌商譽與智慧財產權。企業雖懂得以註冊智財權的方式自我保護,但仿冒問題對企業帶來的攻擊性日益增加、防偽技術又多如牛毛且複雜,本指南彙整之資訊,尚補充了關於ISO標準的相關技術資訊,如《 ISO 22383:2020 》(產品與文件之安全性、彈性、真實性與完整性-重要產品認證方案之選擇與性能評估標準)。這些資訊可以跟防偽技術一併使用,精進企業整體防偽策略。   此外,本指南對於彙整出的每項防偽技術或ISO的相關技術標準,都予以清楚介紹,並說明技術主要特性、優缺點、用途、實施條件以及相關成本,企業可透過本指南比較各式防偽技術,從而選定最適合其業務性質的防偽技術,及早防範仿冒風險,以保護企業之業務營運與品牌發展。

澳門終審法院審結宣告「王老吉」商標因「未認真使用」而註冊失效

  2022年5月澳門終審法院審結一宗涉及中國大陸家喻戶曉的涼茶品牌「王老吉」商標的爭議案,裁定兩個與「王老吉」有關商標的權利人(下稱失效商標之權利人)「未認真」使用商標,故宣告有關註冊失效。   查澳門有關商標失效之法規為《工業產權法律制度》第 231條第1項b款:「一、商標之註冊在下列情況下失效:b) 連續三年未認真使用商標」。而失效商標之權利人主張延展商標專用期限,應認為有認真使用商標,但最後終審法院認為延展商標專用期限不算是認真使用商標,而宣布其註冊商標失效。終審法院也引述歐盟法院判決輔助其判斷,指出關於商標認真使用的主要宗旨為以下: (1)認真使用:本案判決指出「如果說某個已註冊商標的權利人有“權利”對商標進行(排他性的)使用,那麼他同時也負有使用該商標的義務」,因此,商標認真使用指的是權利人必須確實將註冊商標使用在註冊的商品或服務上,達到商標向消費者(或稱公眾)指明某商品與服務來源的法律功能後,始能認定其為認真使用。(歐盟法院亦肯認之,認為認真使用指的是符合商標作為其註冊「產品或服務的來源識別」這一個主要功能)。 (2)未認真使用:本案判決特別指出,如果僅僅是基於阻擋他人使用該商標的「投機性目的」而註冊商標,卻未對公眾使用或僅為象徵性的使用(如非向公眾銷售的內部使用   又本文亦觀察到本案失效商標的權利人非中國知名涼茶「王老吉」所屬的廣州醫藥集團有限公司,若終審法院最後未做出商標失效的判決,將可能影響廣州醫藥集團有限公司在澳門市場拓展「王老吉」品牌。因此企業若要避免此類商標搶註風險,應事前在品牌拓展規劃時期同步做好「商標布局」規劃。否則,只能透過事後向商標專責機關「即時主張救濟」,如:以「商標未使用」主張申請廢止該商標。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP