美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)綜整近20年產官學研的建議,今年7月發布《人類細胞及基因製劑生產變化及可比性試驗》(Manufacturing Changes and Comparability for Human Cellular and Gene Therapy Products)指引草案,提供細胞及基因製劑(含組織工程產品)製造商執行可比性試驗依循的標準,做為實際運作上的參考。US FDA並強調若臨床開發與製程開發同步,將會使產品品質提升、產品供應增加或製造效率提高,讓國內外申請商申請新藥臨床試驗(Investigational New Drug, IND)及上市許可有明確的遵循方向。
之所以會需要有此指引的提出,乃是因為現今全球評估生物製劑原料藥或成品在製造品質變更前後的比較,需提供可比性試驗報告,做法上都是參考2004年國際醫藥法規協和會(International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, ICH)公布「生物製劑可比性試驗」(ICH Q5E Biotechnological/biological products subject to changes in their manufacturing process: comparability of biotechnological/biological products)指引,但主要適用對象為蛋白質藥品及其衍生物,並不完全適用細胞及基因製劑。
可比性試驗的目的是確保化學製造管制(Chemistry, Manufacturing, and Controls, CMC)變更前後的原料藥或成品,品質需具有高度相似性,才可引用之前的CMC或IND的資料;如果使用的細胞種類、病毒載體及組織工程產品等重大改變,已嚴重影響原料藥或成品的品質,不適用目前的可比性試驗,需重新申請IND或上市許可,將造成申請商需要投入更多的成本,影響產品上市時程。
細胞及基因製劑屬於新興療法,其可比性試驗的審查迄今全球並沒有明確的規範,都是參考ICH Q5E建議,而FDA發布本指引草案正向表列細胞及基因製劑,其驗證確校、安定性及批次變更的可比性依據。讓業者可依循本指引草案,加速細胞及基因製劑的開發、IND申請及產品上市,提升生醫產業的發展。
本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。 以下說明數位證據系統的重點: 1.數位證據系統適用的案件範圍 適用於「小額訴訟當事人於聽證會前之證據開示程序」。 關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。 依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。 2.數位證據系統可上傳的數位證據類型 訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。 當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。 經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。 該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。 3.數位證據系統的檔案權限控管之設定 (1)上傳、編輯、刪除權限 訴訟當事人可上傳數位證據。 於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。 (2)線上瀏覽權限 上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。 於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。 (3)下載權限 訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。 4.證據於數位證據系統的保存期限 於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。 美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。 上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本《人工智慧技術研究開發及應用促進法》簡介日本《人工智慧技術研究開發及應用促進法》簡介 資訊工業策進會科技法律研究所 2025年06月25日 為全面性且有計畫地推動人工智慧(以下簡稱AI)相關技術之研發及應用,同時為改善國民生活和促進國家經濟健康發展做出貢獻,日本內閣於2025年2月28日提出《人工智慧技術研究開發及應用促進法》(以下簡稱本法)草案。 [1] 本法進一步於同年5月28日經參議院表決通過[2] ,通過之條文內容與2月28日提出之草案並無二致,惟5月27日內閣委員會另外通過20點附帶決議[3] ,其中涵蓋共多具體措施。本法於6月4日公布施行[4] ,以下將介紹本次日本《人工智慧技術研究開發及應用促進法》及附帶決議內容。 壹、立法緣由 近年AI技術及應用蓬勃發展,然而日本卻深感國內對AI發展不如其他主要國家,依據科學技術創新推進事務局(科学技術・イノベーション推進事務局,以下簡稱科技事務局)釋出之立法概要,本次立法主要有兩大理由 [5]: 一、國內AI技術開發、應用起步緩慢 科技事務局引用史丹佛大學於2024年所發布之《AI指數報告》(AI Index Report 2024),該份報告彙整2023年各國對於AI相關產業之民間投資額,如下圖所示。從此圖可知,作為世界主要經濟體的日本,對於AI的民間投資於2023年竟僅有6.8億美元,遠遠不及美國的670.22億美元、中國77.6億美元及英國37.8億美元。[6] 圖一、各國對於AI相關產業民間投資額統計 資料來源:STANFORD INSTITUTE FOR HUMAN-CENTERED AI [HAI], Artificial Intelligence Index Report (2024). 此外,根據日本總務省於2024年所發布之調查結果,如下圖所示,日本僅有9.1%的國民有使用過生成式AI之經驗,相較於中國的56.3%、美國的46.3%、英國的39.8%及德國的34.6%,仍有相當程度之落後。 [7] 圖二、各國國民使用過生成式AI之經驗調查 資料來源:総務省,令和6年版情報通信白書 不僅國民的AI使用率低,日本總務省亦針對企業將AI運用於其業務進行調查,如下圖所示,目前有在使用AI之企業僅有46.8%(包含已取得具體成效及尚未取得成效),其餘53.2%之企業則正在測試階段、正在商議導入或至今仍未討論導入。對比中國的95.1%、德國的80.6%及美國的78.7%,雖不如國民使用率落後,但仍有不少進步空間。[8] 圖三、各國企業業務中AI運用情形調查 資料來源:総務省,令和6年版情報通信白書 二、多數國民對於AI仍感到不安 科技事務局引用KPMG於2023年所發布的《全球AI信任研究報告》(Trust in AI: A Global Study 2023),僅有13%的日本國民認為現行法規已足以確保AI可被安全使用,亦低於中國的74%、德國的39%及美國的30%。此調查結果亦如實反映出有77%的日本國民迫切希望國內能針對AI訂定相關規範。[9] 除上述兩項主要理由外,考量日本有需要進一步促進創新發展、積極應對AI產生之風險,因此科技事務局決定訂立新的AI法規。 貳、立法重點 《人工智慧技術研究開發及應用促進法》總計28條,共分為四個章節,包含第一章總則(第1條至第10條)、第二章基本政策實施(第11條至第17條)、第三章人工智慧基本計畫(第18條)及第四章人工智慧戰略本部(第19條至第28條)。考量依法規條文及章節順序不易說明,以下將以科技事務局所提供之立法概要之脈絡進行說明。 一、目的 第1條即說明本法旨在全面且有計畫地制定AI相關政策,推動AI技術之研發與應用,以改善國民生活並為國民經濟發展做出貢獻。 二、基本理念 第3條亦規定AI技術之研發與應用應以提升AI產業之國際競爭力為目標,希冀藉由AI技術創造高效率新業務,並得以應用於國民日常生活與經濟活動之各階段,另考量AI技術若經不當使用,將有助漲犯罪行為或洩漏個資等風險發生之可能性,故應確保AI技術之正確使用。最後,同條亦規定日本應在AI技術之研發與應用上進行國際合作,並努力在國際合作中取得主導地位。 三、AI戰略本部 本法第四章皆為設立AI戰略本部相關之條文,第19條、第20條及第25條第2項規定AI戰略本部應由內閣所設立,其職責有以下兩項: (一)研擬AI基本計畫草案,並推動相關事宜。 (二)促進AI相關技術研發及應用相關重要政策之規劃、提案及統籌協調等事宜。 (三)除本法規定的事項外,總部相關必要事項由政令規定。 為使AI戰略本部可順利履行上述職責,第25條賦予AI戰略本部認為有必要時,得向行政機關、地方公共團體、獨立行政機構、地方獨立行政機構的首長以及公共機關的代表,要求提供資料、發表意見、進行說明及提供其他必要協助。 第21條至第28條則為與本部組成相關之規定,其規定AI戰略本部組成成員包含以下三個職位: (一)部長:由總理擔任,掌管總部事務,並領導監督總部工作人員。 (二)次長:由官房長官及AI戰略大臣(由總理任命)擔任,負責協助部長履行職責。 (三)由除部長、次長以外的所有國務大臣組成。 四、AI基本計畫 如上所述,AI戰略本部重要職責之一,即研擬AI基本計畫草案。依第18條規定,總理應將AI戰略本部所研擬之AI基本計畫草案,提請內閣決定是否同意草案內容,待內閣作成決定後,總理應立即公布AI基本計畫。 同條亦明定AI戰略本部應以前述第二節的基本理念及以下第五節的基本政策實施之相關規定為基礎,研擬AI基本計畫草案,其應涵蓋之事項包含: (一)AI技術研發及應用政策實施的基本方針。 (二)為促進AI技術研發及應用,政府應全面性且有計畫地實施政策。 (三)政府為能全面性且有計畫地實施政策所採取的必要措施。 五、基本政策實施 第二章所涵蓋之第11條至第17條則規定政府應執行之基本政策實施事項,包含: (一)促進AI技術研發 依第11條規定,國家應採取措施促進AI技術研發,使AI技術可順利從基礎研究階段進展至實際應用階段,並在研發機構間建立研發成果得以互相流通之制度,同時提供研發成果資訊。 (二)提升基礎設施建置與使用 依第12條規定,國家應採取措施建置AI基礎設施,包含AI技術研發及應用所需之大規模資料處理、資通訊、電磁紀錄儲存等設備及為特定目的所收集之資料集等,並使AI基礎設施得以廣泛供研發機構或企業所使用。 (三)確保符合國際規範 依第13條規定,國家應根據國際規範制定基本方針並採取其他必要措施,以確保AI技術之研發及應用得以適當之方式進行。 (四)確保人力資源 依第14條規定,國家應與地方政府、研發機構和企業緊密合作,並採取必要措施,以確保、培訓和提升各領域人才的專業素質,使其具備AI技術從基礎研究至實際應用於民眾生活或經濟活動之各階段所需之專業知識,並提升其專業知識之廣度及深度。 (五)提升教育 依第15條規定,國家應提升與AI技術相關之教育與學習、辦理推廣活動或採取其他必要措施,以增進大眾對AI技術之認知與興趣。 (六)研究調查 依第16條規定,國家應掌握國內外AI技術研發及應用之最新趨勢,並進行有助於AI技術研發及應用發展之研究與調查,包含分析因不正當目的或不適當方法研發應用所導致國民受侵害之案例,及針對不正當使用之因應對策。 同時,國家亦應根據此類研究調查成果,向研發機構、企業和其他人員提供指導、建議和最新資訊,並採取其他必要措施。 (七)國際合作 依第17條規定,國家應進行AI技術研發及應用之國際合作,積極參與國際規範之制定過程。 六、職責 第4條至第8條分別規定國家、地方政府、研發機構、企業與國民應各司其職,其職責分述如下: (一)國家 依第4條規定,國家應依前述第二節的基本理念,制定並實施促進AI技術研發及應用之基本政策實施相關之計畫。此外,國家應在行政機關間積極應用AI技術,以提升行政效率。 (二)地方政府 依第5條規定,地方政府應依前述第二節的基本理念,在與國家進行適當分工後,結合各地方特色,制定並實施自主政策,以促進AI技術之研發及應用。 (三)研發機構 依第6條規定,大學及研發機構應依前述第二節的基本理念,積極進行AI技術之研發,推廣其成果,培育具有專業性和廣泛知識之人才,並協助國家與地方政府之政策實施,而國家與地方政府則應促進大學研究活動,尊重研究人員自主權及將各大學之特色納入考量。 此外,研發機構應進行跨領域或綜合性研發,同時為有效推動AI技術研發,應綜合考量人文科學及自然科學等領域之專業知識。 (四)企業 依第7條規定,任何企業有意開發或提供使用AI技術之產品或服務,或任何其他有意在其業務活動中使用AI技術,應依前述第二節的基本理念,提升其業務之效率和品質。 此外,上述企業應透過積極使用AI技術創造新興產業,並須配合執行國家依第4條所定之措施及地方政府依第5條所定之措施。 (五)國民 國民應依前述第二節的基本理念,加深對AI技術之認知與興趣,並盡可能配合執行國家依第4條所定之措施及地方政府依第5條所定之措施。 七、附帶決議 本次立法過程除條文本身外,5月27日內閣委員會亦通過20點附帶決議,針對政府實施本法時應採取之適當措施進行補充說明,以下摘錄重點說明 :[10] (一)政府應以「以人為本之AI社會原則」為基礎,進行AI技術研發及應用。 (二)政府制定AI基本計畫和基本方針,或執行政策措施時,應將風險降至最低,並考量推廣AI之益處。 (三)企業和國民應充分了解AI應用之注意事項及規避風險之措施,並透過教育使國民了解AI合理使用方法及其風險。 (四)政府針對AI應用導致之失業或貧富差距擴大採取必要措施。 (五)政府應透過法規打擊AI技術之濫用,特別是利用兒童圖像產生之深偽色情內容,並加強對網站管理員刪除違法內容之監管,保護受害者。 (六)政府和民間機構將合作開發以日語為基礎之大型語言模型。 (七)政府應消除新創企業等新進者之壁壘,創造公平開放之市場環境。 (八)政府應將AI定位為國家戰略重要領域。 (九)政府應考慮電力供需,策略性地建設資料中心。 (十)政府應以跨學科之觀點強化對AI人才之培養,並確保足夠有投資。 (十一)政府應積極營造有利於國家、地方政府、企業應用AI之環境,並避免因營運效率提升而出現裁員情形。 (十二)政府應執行降低AI風險之措施,並進行公私合作以確保安全。 (十三)政府於進行調查和指導時,應避免施加過重之負擔或要求過多資訊揭露,同時考慮保護企業之商業機密等智慧財產權。 (十四)政府於國民權益受害之個案進行調查和指導時,應即時自企業或服務使用者和人工取得資訊,以便迅速發現個案並因應。 (十五)針對依《廣島人工智慧進程國際行為準則》負有報告義務之企業,政府應最大限度地減少其與現行國內法規之報告義務之重複。 (十六)政府應不斷修訂本法及其他相關計畫與方針,以確保AI應用能促進國民生活改善和國民經濟發展,並及時應對新風險。 (十七)AI戰略總部之組織架構,應消除各部會、機構垂直分工造成之弊端,並積極自民間招募人才。 (十八)政府應儘早成立由AI倫理、法律和社會議題等領域專家組成的智庫機構。 (十九)如出現現行法規難以因應之新風險,政府應考慮導入風險導向之概念,依風險等級而採取不同監管措施。 (二十)因應AI應用產生之智慧財產權相關侵權行為,政府應參考其他國家之情形,探討因應措施。 參、總結 日本緊接著韓國之後,成為亞洲第二個在法律層級通過AI法規的國家,惟相較歐盟或韓國通過的AI法,日本在法律條文的訂定上,主要是針對政府與各界之職責進行規範,而缺乏對於AI技術開發或應用風險之監管。儘管附帶決議中較多具體內容,仍須待AI基本計畫訂定後,日本對於AI技術開發或應用之監管模式才會有較清晰之雛形。 考量到日本尚有通過20點附帶決議,日後仍可關注AI戰略本部如何依據AI法及附帶決議擬定AI基本計畫,未來或可成為我國人工智慧法制政策規劃之參考依據。 [1]人工知能関連技術の研究開発及び活用の推進に関する法律案(第217回閣法第29号)。 [2]〈議案情報:人工知能関連技術の研究開発及び活用の推進に関する法律案〉,参議院,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/217/meisai/m217080217029.htm(最後瀏覽日:2025年6月11日)。 [3]参議院,〈人工知能関連技術の研究開発及び活用の推進に関する法律案に対する附帯決議〉,https://www.sangiin.go.jp/japanese/gianjoho/ketsugi/current/f063_052701.pdf(最後瀏覽日:2025年6月11日)。 [4]人工知能関連技術の研究開発及び活用の推進に関する法律法律(令和7年法律第53号)。 [5]內閣府,〈人工知能関連技術の研究開発及び活用の推進に関する法律案(AI法案)概要〉,https://www.cao.go.jp/houan/pdf/217/217gaiyou_2.pdf(最後瀏覽日:2025年6月11日)。 [6]STANFORD INSTITUTE FOR HUMAN-CENTERED AI [HAI], Artificial Intelligence Index Report (2024), https://hai.stanford.edu/assets/files/hai_ai-index-report-2024-smaller2.pdf (last visited June 11, 2025) [7]総務省,〈令和6年版情報通信白書〉,https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r06/pdf/n1510000.pdf(最後瀏覽日:2025年6月11日)。 [8]総務省,〈令和6年版情報通信白書〉,https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r06/pdf/n1510000.pdf(最後瀏覽日:2025年6月11日)。 [9]KPMG, Trust Inartificial Intelligence: Country Insights on Shifting Public Perceptions of AI (2023), https://assets.kpmg.com/content/dam/kpmgsites/xx/pdf/2023/09/trust-in-ai-country-insight.pdf.coredownload.inline.pdf (last visited June 11, 2025). [10]参議院,〈人工知能関連技術の研究開発及び活用の推進に関する法律案に対する附帯決議〉,https://www.sangiin.go.jp/japanese/gianjoho/ketsugi/current/f063_052701.pdf(最後瀏覽日:2025年6月11日)。