日本內閣府召集研究小組 解決因AI帶來之智財問題

日本內閣府組成「AI時代的智慧財產權研討小組」,由東京大學副校長渡邊敏也作為主席於今(2023)年10月4日召開首次會議,為討論生成式AI(人工智慧)發展帶來的智慧財產權問題。討論主題包括法規範現況、在人類參與有限的情況下由生成式AI所產出之發明是否可以申請專利等,目標於年底前彙整、蒐集企業經營者待解決議題。亦將從其他法律的角度進行討論,例如:AI模仿商品形態是否亦受到日本《不正競爭防止法》之拘束;AI與專利之間的關係,依據日本《專利法》,專利權目前僅授予個人參與創造過程的發明,隨著AI技術的發展,預計會出現難以做出決策的情況,將討論諸如取得專利所須的人類參與程度等問題;以及擁有大量資料的權利持有者向AI開發者提供有償資料的優缺點。與會專家表示,希冀看到從鼓勵利用AI進行新創作和發明之角度出發。日本文化廳和其他相關組織亦同步討論AI生成的作品,若與現有之受著作權保護的作品相似時是否會侵害著作權之議題。

日本內閣府早先於今年5月公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理),我國行政院於今年8月31日正式揭示國科會擬定之「行政院及所屬機關(構)使用生成式AI參考指引」草案,我國經濟部智慧局亦規劃研擬就AI生成物是否享有著作權或專利權、訓練資料合理使用範圍、企業強化營業秘密保護等3大面向建立AI指引,國內外AI相關指引議題均值得持續追蹤瞭解。另,企業無論是擔憂AI技術成果外洩、不慎侵害他人智財權或智財成果被生成式AI侵害之虞等,因應數位化趨勢與數位證據保全而應強化相關管理措施,資策會科法所發布之《營業秘密保護管理規範》、《重要數位資料治理暨管理制度規範(EDGS)》協助企業檢視自身管理措施之符合性並促進有效的落實管理。

本文同步刊登於TIPS網(https://www.tips.org.tw

相關連結
你可能會想參加
※ 日本內閣府召集研究小組 解決因AI帶來之智財問題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9091&no=67&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。   本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。   但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

新加坡智財融資計畫介紹

新加坡智財融資計畫介紹 科技法律研究所 法律研究員 羅育如 2014年12月23日 壹、前言   新加坡政府於2013年3月份提出IP (Intellectual Property) Hub Master Plan 10年期計畫[1],目標是成為亞洲智慧產權匯流中心。本文針對其中的智財融資計畫(IP Financing Scheme;IPFS)進行觀察,目的在於了解新加坡政府如何運用政府資源,協助建構智財交易市場。 貳、重點說明   新加坡政府2014年4月18日公布總值為1億新元(約24億新台幣)的智財權融資計畫,以協助新加坡本地的企業通過所持有的智財權獲得銀行的融資。   根據這項計畫,新加坡智財局將委託新加坡三家智財鑑價機構,為那些擁有智財權的企業進行鑑價,而相關企業則可以智財權為抵押,向參與本計畫的三家當地銀行—星展銀行(DBS Bank Ltd)、華僑銀行(Oversea-Chinese Banking Corporation (OCBC) Ltd)和大華銀行(United Overseas Bank (UOB) Ltd)申請企業貸款,用以擴展企業業務。   而新加坡智財局將依據不同企業貸款的申請情況,以計畫經費承擔部分違約風險,對於企業的智財資產融資負擔連帶責任(the Government partially underwrites the value of IP used as collateral)。須強調的是,該項計畫的申請資格需符合兩個標準:1.必須是新加坡企業;2.擔保品必須包含已獲證的專利。其餘具體推動作法,介紹如下: 一、申請流程   智財權融資計畫的申請流程分為三個步驟[2],首先必須向任選三家融資銀行的其中一家提出初步評估申請。接著則從三家合格之專門鑑價服務公司中,挑選適合的IP鑑價師,針對要作為擔保品的已獲證專利,進行價值評估。最後,該申請企業再將專業鑑價報告以及融資申請書,提交給融資銀行作審查。 二、合格之專業鑑價機構   如欲成為融資銀行可接受之合格智財權鑑價服務公司,必須通過新加坡智財局的評選機制,參加評選的公司必須符合以下四個條件: 1.在專利鑑價領域至少五年經驗。 2.過去曾替營業額500萬新元(約一億兩千萬台幣)的企業進行過智財鑑價。 3.曾經評鑑過至少100萬新元(約2400萬台幣)智財價值的案件。 4.每年的營業額最少為100萬新元(約2400萬台幣)。   目前通過評選之合格鑑價服務公司包括American Appraisal Singapore Pte Ltd(地點在新加坡)、Consor Intellectual Asset Management(地點在美國)以及Deloitte & Touche Financial Advisory Services Pte Ltd(地點在新加坡)。換言之,除上述三家公司外,融資銀行將不接受其他公司提供之智財權鑑價報告。 三、智財鑑價費用補助   新加坡智財局會補助欲申請智財權融資計畫之企業智財鑑價費用,但前提條件是,申請企業必須獲得通過融資審查,並提取100%獲准貸款之後,政府才會補助智財鑑價費用,而補助費用計算方式有三種選擇,政府從中選擇較低金額作為補助費用,包括: 1.50%智財鑑價費用。 2.該項智財價值2%。 3.新幣2.5萬(約60萬台幣)。 參、事件評析   一般而言,銀行不接受智財資產作為企業融資的擔保品,因為智財資產無明確的交易以及流通市場,當企業無法依約償還貸款時,銀行無法買賣智財擔保品,取回資金。   為了解決這個根本性的問題,新加坡政府透過智財融資計畫,直接提供資金挹注,協助銀行承擔智財融資風險,使企業可透過智財資產實質的取得資金,一方面讓企業更加願意投注智財相關費用,因為智財產出除了可用於內部製造與創新之外,還可以成為融資擔保品,協助企業取得資金。另一方面則可活絡智財交易市場,因為雖然政府承擔部份銀行風險,但智財交易市場還是會因為有需求而慢慢浮現。 [1] IP STEERING COMMITTEE, Intellectual Property (IP) Hub Master Plan─Developing Singapore as a Global IP Hub in Asia (2013) http://www.ipos.gov.sg/Portals/0/Press%20Release/IP%20HUB%20MASTER%20PLAN%20REPORT%202%20APR%202013.pdf(最後瀏覽日2014/10/15) [2] Intellectual Property Financing Scheme, ipos.gov, http://www.ipos.gov.sg/IPforYou/IPforBusinesses/IPFinancingScheme.aspx(last visited Oct. 15, 2014).

新加坡以親商政策及稅務優惠等措施提升新創生態系競爭力位居亞洲第一

全球創新研究平台StartupBlink 於2025年5月20日發布《2025全球新創生態系指數》(Global Startup Ecosystem Index 2025),分析與評比全球118個國家及1,473座城市新創生態系之數量、品質與商業環境。其中新加坡自2021年起全球排名不斷攀升,於2022年起佔據亞洲第1之寶座,截至2025年更躍升全球第4,僅位居美國、英國及以色列之後。 新加坡新創生態系之競爭力優勢如下: 1、穩定金融環境:企業與銀行具備充足流動資本與健康償債能力。 2、親商環境制度:新加坡政府以全球創業者計畫(Global Founder Programme, GFP),提供便利簽證、產業人脈引介等多方面支持,吸引經驗豐富之創辦人至新加坡創業。 3、優惠稅務措施:因應全球最低稅負制度,增訂「可退還投資抵減」(Refundable Investment Credit, RIC),針對促進新加坡經濟或提升新興產業成長為重大投資之公司,可扣抵企業應納之稅負。 4、推動產學合作:新加坡學術界除了積極培育高素質人才進行研發外,亦提供專業知識諮詢、產業交流機會,及海外業務拓展之協助,積極推動產學合作,使校園成為創業之溫床。 2025年全球新創生態系面臨兩大衝擊,即AI技術的崛起與迅速更跌,與複雜多變的地緣政治,促使政府須在詭譎的全球局勢中,因應情勢調整國家發展策略,推動新創持續成長。而新加坡政府及學術研究機關均致力推動新創政策,加上充足的基礎設施,吸引大量國際人才與投資,進而促使該國新創生態系之蓬勃發展。

TOP