美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引

美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容:

(1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。

(2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。

(3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。

具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。

從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。

相關連結
※ 美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9106&no=67&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
美國國會就外國情報偵察法提出修正草案

  美國民主黨國會議員針對「外國情報偵察法」(Foreign Intelligence Surveillance Act of 1978, FISA)提出修正草案,2007電子監察法案 (Responsible Electronic Surveillance That is Overseen, Reviewed and Effective Act of 2007, RESTORE Act of 2007),主要目的在提高政府部門對外國人進行電子監聽之門檻,以增加電子監聽之隱私保障。   在911恐怖攻擊事件後,美國有不少電信業者開放其網路供政府部門進行電子監聽。但是隱私保護團體認為此一行為對於美國民眾之個人隱私造成莫大傷害,並對各大電信公司提起訴訟。為協助配合政府監聽要求之電信業者免於此一民事訴訟糾紛,布希政府要求國會修正外國情報偵察法的同時,增訂溯及既往之條款,使過去曾配合政府之監聽要求的電話及網路服務提供業者能免責,不需面對高額求償之訴訟。   儘管隱私保護團體認為該修正草案對於隱私權之保護比現行法規更為周延,但仍認為美國國會還應立法要求政府對於本國人之電話或電子郵件訊息之監聽,必須事先申請獨立之搜索票。但布希政府指出,針對所有可疑目標之監聽均一一申請獨立搜索票將會花費過多時間,影響監聽之效率。   由於此一修正草案具有高度爭議,因此美國國會已於日前延後該修正草案之表決時間,以便就該修正草案進行更周詳之討論。

歐盟第29條資料保護工作小組澄清有關網際行為廣告cookie的使用

  歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)第五條(3)中對於cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,將於2011年5月全面施行。惟對於cookie之使用,部分網路業者認為如果網路使用者沒有選擇不要裝置cookie (opt-out),那麼就等同於同意裝置,而不需另外取得使用者的同意。針對此點,歐盟第29條資料保護工作小組(Article 29 Data Protection Working Party)於2010年06月22日對於網際行為廣告作出一份意見(Opinion 2/2010 on online behavioural advertising)。   意見中澄清,網際行為廣告係一種透過cookie的使用,追蹤蒐集網路使用者上網行為的資料,其網路資訊將被使用於日後發放與使用者上網行為相對應的廣告之用。除非是屬於網路使用者明白要求使用cookie,或是使用網路服務所『必要』的cookie(例如,沒有cookie就無法顯示或進行至下一個頁面),則不必先行取得使用者的同意外;其他凡經由cookie所儲存的資料,均應被視為『個人資料』,使用上必需先行取得網路使用者的明示同意,以自行選擇(opt-in)的方式接受cookie的使用,後存於網路使用者的個人電腦中。業者不得以搜尋引擎的cookie設定主張視為網路使用者等同已經明示同意使用cookie進行被追蹤及蒐集資料。   該意見受到許多歐盟及國際之網際出版、廣告及商務業者的反彈,業者表示所蒐集的資料並非可辨認性或敏感性資料,此規範的執行將會嚴重衝擊到廣告產業的收益,建議採行自律規範或使用行為守則來取代上述規定。   由於這項規範尚未於歐盟中被執行,歐盟第29條資料保護工作小組對於技術上如何遵循該規範也並沒有提出具體的建議。

歐盟網路與資訊安全局發布「行動支付與電子錢包安全防護」報告

  為因應探討並強化網路安全環境,歐盟網路與資訊安全局(European Union Agency for Network and Information Security , ENISA)2016年12月發布「行動支付與電子錢包安全防護」研究報告(Security of Mobile Payments and Digital Wallets)。歐盟網路與資訊安全局ENISA主要係因,近來行動支付興起,利用行動支付方式買賣貨品,係象徵著朝向數位化轉換趨勢,消費者希望透過更便捷的方式購物避免帶著實體錢包和一堆卡片,增加購物的不便。但是使用電子錢包和行動支付並非全然沒有安全疑慮,根據2015年的一項調查,有百分之20的美國消費者對於行動支付的過程中可能遭到有心人士擷取個人資料,這就表示此乃使用行動支付的主要擔心重點,有13%使用者擔心自己的電話遭到駭客入侵。此外根據另一項調查,針對九百名資安專家所做的調查顯示,僅有23%的的人員認為目前現有的安全機制足以防範個資外洩,但有47%的人員認為現有的機制缺乏安全性,但當中也有百分之30的回覆認為現在的安全機制是否安全不能確定。因此,目前而言,安全防護可謂是消費者最關心的重點,且對於安全的疑慮亦使得行動支付沒有辦法大量推行採用。   因此歐盟網路與資訊安全局ENISA於此報告提出了目前經確認的主要威脅有: 行動用戶的安全威脅:任意裝設惡意軟體、釣魚軟體、社交工程軟體。 行動設備威脅:行動設備遭竊或遺失與不當近用。 行動支付與電子錢包威脅:逆向工程、竄改支付軟體、使用在滲透到系統之後,會隱藏登錄項目、檔案或處理序等資源的一種軟體。 消費者威脅:POS惡意軟體、MiTM、重放攻擊。 付款服務提供者威脅:付款系統與資料連結崩潰的疑慮。 支付網路提供者威脅:代碼服務崩潰、拒絕服務。 發行商威脅:付款授權流程崩潰與代碼資料崩潰。 行動支付軟體提供者威脅:機敏個資外洩、雲端客戶資訊管理遭到入侵、代碼服務拒絕。   因此有鑑於行動支付產業目前仍在新興階段,欠缺明確標準,業者間的自主管理顯得相當重要,所以網路與資訊安全局ENISA提出了一些得以遵循的建議與標準: 消費者在使用行動支付的服務軟體時,必須採取多項最低安全防護措施。 行動主機提供業者應該確保軟體定時更新,並且修補安全上的漏洞,針對安全性與近用用戶資料的可能性部分加強。 行動支付的應用程式提供者,應該再提供服務給消費者時,同時提供消費者資訊,本應用軟體做了何種安全防護,供消費者知悉。 行動支付業者應當建立詐騙監控機制。   網路與資訊安全局ENISA提出上述建議與標準,主要係希望業者採用這樣的標準或好習慣的建議後,可以對於消費者、零售商、銀行等業者產生益處。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP