歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架

歐盟於2023年10月11日發布《歐洲綠色債券監管及環境永續債券市場與永續連結債券自願性揭露規則》(Regulation on European Green Bonds and optional disclosures for bonds marketed as environmentally sustainable and for sustainability-linked bonds,下稱《歐洲綠色債券規則》),預計於2023年12月20日生效,針對在歐盟境內發行之綠色債券建立一套監管框架,課予欲使用「歐洲綠色債券」(European Green Bond)或「EuGB」等名稱發行環境永續債券的發行人一定義務,促進綠色債券的一致性和可比性,以保障投資人。綠色債券是發展綠色技術、能源效率和提升資源運用以及其他永續相關基礎設施投融資的主要工具之一,本規則之通過也被視為落實歐盟永續成長融資策略以及向碳中和、循環經濟轉型的一大進展。

《歐洲綠色債券規則》規範重點如下:
1.資金用途限制:《綠色債券規則》所有透過歐盟綠色債券募得的資金,原則上均必須投資於符合《歐盟永續分類標準》(EU Taxonomy)技術篩選標準的永續經濟活動,只有在所欲投資的經濟活動類別尚未被納入該標準時得為例外,且以總額之15%為限;
2.資訊揭露:綠色債券之發行人有義務揭露該債券之概況介紹(Factsheet)、資本支出計畫、資金使用分配報告、衝擊報告,並於債券公開說明書敘明資金用途,並得選擇進一步說明該債券之資金如何與自身企業整體環境永續目標相結合;
3.外部審查:前述資訊均須由已向歐洲證券與市場管理局(European Securities and Markets Authority)註冊之外部機構進行審查,以確保其準確性及可靠性。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9120&no=65&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
日本電業節能義務之介紹

全球四大晶片業者共同研發奈米蝕刻技術

  世界四大電腦晶片業者決定與紐約州合作,在今後五年內出資 5.8億美元,研究發展下一代電腦微晶片製造技術。紐約州預定出資1.8億美元,美國IBM、超微半導體(AMD)、美光科技(Micron)與德國英飛凌預定各出五千萬美元的現金與設備,另2億美元由多家提供物料與設備的廠商提供。惟世界最大晶片廠商英特爾(Intel)並未參與此計畫,英特爾目前在x86微處理器市場中,占有銷售量的80%、銷售額的90%。   此國際奈米蝕刻事業( International Venture for Nanolithography, INVENT)計畫的基地,預定設在奧伯尼紐約州立大學奈米科學與工程學院,預期共有500多位研究人員、工程師與其他人員,投入此計畫。   奈米科技是研究分子與原子級的科學,此一計畫研究重心是利用光線,蝕刻大約頭髮直徑十萬分之一大小的電路,讓參與公司及早取得與學習應用研究出來的蝕刻工具。由於近年半導體速度與複雜性快速提高,晶片業者製造更小、更快晶片的難度增加,研究發展成本飛躍上升,業界體認到必須合作,才能負擔。一具蝕刻工具成本可能高達 2500萬美元,蝕刻工具進步攸關晶片廠商繼續縮小晶片規模,使每個晶片具有更多運算與儲存能力。目前生產的最先進晶片運用90奈米科技,晶片廠商希望從2006或2007年起,生產65奈米晶片。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

社群媒體發展網路不當言論管理機制之趨勢觀察

TOP