2024年2月,日本專利廳根據公開招募結果,公布將由一般社團法人發明推進協會執行令和6年度的「產業財產權人才培養協力事業」。
日本自2021年起開始推動「產業財產權人才培養協力事業」,至今年已邁入第4年,且自2024年起預計於南非共和國開設新的專利審查實務課程,以提升南非共和國專利審查官的必要能力。
「產業財產權人才培養協力事業」主要針對日本企業進行海外經濟投資及活動熱門的發展中國家(包含新興國家以及最低度開發國家LDC),提供積極性的人才培養支援,並以強化該國家能安定培養智慧財產相關權利取得與執行的實施人才為目的。在法制整備較為落後的最低度開發國家如柬埔寨,人才培養強化支援的範圍亦包含產業財產權制度的整備。人才培養的對象以智慧財產廳的職員、取締機關的職員以及民間的智慧財產關係業者為重點,透過提升其對於智慧財產權的能力,解決日本企業為在外國取得產業財產權的權利保護需要花費大量時間、日本企業的產業財產權在外國受到侵害的案件逐年增加等問題,以消除日本企業在外國進行經濟投資及活動時的巨大妨礙。
日本專利廳亦針對研修方針下列事項提出建議:
1、消除發展中國家審查延遲的對應方針
於研修中透過增加案例閱讀、資料尋找演習等的講義時間,提升尋找能力及判斷能力;並透過學習日本的IT系統、業務處理過程,提升系統面的支援能力。
2、提升發展中國家審查品質的方針
透過學習日本的基準、判斷手法提升審查、審判的品質;並透過學習日本的管理手法,提升審查品質管理能力。
3、仿冒品對策的對應方針
透過介紹以日本及各國事例為基礎的支援,加深對於仿冒品對策的理解;並透過增加與實施健全執法相關聯的講義時間,加深對於仿冒品對策的一般理解。
4、建構更有效果的研修方法的對應方針
透過設置課程全體的導師制度(mentor),提升研修效果的同時,有效活用「線上」及「實體」連續性的混合研修方法,並透過於實體研修中實施團體討論、在職訓練(OJT)、案件閱讀、模擬裁判(Mock Trial)等,提升實踐能力。
本文後續會持續留意日本「產業財產權人才培養協力事業」的發展,以掌握日本對於發展中國家支援的最新資訊。我國企業如未來預計於發展中國家進行經濟投資或活動時,亦應注意該國智慧財產權之程度,以評估相關風險。
本文同步刊登於TIPS網(https://www.tips.org.tw)
日本總務省下設之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年4月19日第4次會議中提出當前日本車聯網面對之相關課題及策略目標。至目前為止日本智慧型運輸系統(Intelligent Transportation System)各自已發展出道路交通資訊通信系統(Vehicle Information and Communication System,簡稱VICS)、電子收費系統(Electronic Toll Collection System,簡稱ETC)、雷達防追撞(レーダー)等不同通訊技術,自動駕駛則發展至初期階段。日本當前發展中面臨其企業國際競爭力確保與強化、持續友善環境之可能性、高齡化及勞動生產力人口減少等問題。希望透過國家開發之系統及國際服務方式,利用交通資訊通信系統實現最佳的交通狀態,在人口稀少之地區利用無人駕駛系統,使駕駛不足之問題得以解決,對當地之購物及交通上可以加以協助。車聯網研究會設定之4大目標為: 零交通事故之社會 確保人之行動自由 便利、快速、安心之生活環境 生活方式的變化 透過利用車與車間通信等技術,降低事故之發生,普及車聯網等資通訊系統,車中行動模式之變革,並透過異業結合創造新的服務模式,達成安全、安心、便利之智慧聯網生活4大目標。
蘋果電腦(Apple)被判專利侵權須賠償美金1900萬元蘋果電腦(Apple)於2009年4月23日被美國德州東區地方法院判定侵害OPTi 公司之專利並且必須賠償美金$1900萬元。此項專利涉及記憶體之”predictive snooping” 技術。陪審團並認為蘋果電腦之行為構成故意侵權。蘋果電腦雖主張OPTi 公司之專利為無效,但此抗辯不為法院所採納。 OPTi 公司自2003年開始即放棄其原有的製造與販賣產品的生意,改經藉由提起侵權訴訟來獲取利益。除了控告蘋果電腦外,OPTi 公司也針對其”predictive snooping” 專利技術於同一法院對AMD 公司提出類似的專利侵權訴訟。由蘋果電腦此次被判敗訴來看,OPTi 公司似乎已準備好擴大藉由它所擁有的predictive snooping” 技術專利以提起訴訟的方式來獲取授權收益。如同以往,蘋果電腦未對此次被判侵權賠償做出任何評論。
美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。 在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。 該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。
美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。