以色列發布人工智慧監管與道德政策

以色列創新、科學及技術部(Ministry of Innovation, Science and Technology)於2023年12月17日公布以色列首個關於人工智慧的監管和道德政策,在各行各業將人工智慧作為未來發展方向的趨勢下,以多元、協作、原則、創新的理念為其導向,為了化解偏見、人類監督、可解釋性、透明度、安全、問責和隱私所帶來的衝擊,以色列整合政府部門、民間組織、學術界及私部門互相合作制定政策,以求解決人工智慧的七個挑戰,帶領以色列與國際接軌。

該人工智慧政策提出具體政策方向以制定措施,其中具有特色的三項為:
1. 軟性監管:人工智慧政策採取軟性監管制度,以OECD人工智慧原則(OECD AI Principles)為基礎,採行制定標準、監督與自律等方式促進人工智慧永續發展,注重以人為本的道德原則,強調創新、平等、可靠性、問責性。
2. 人工智慧政策協調中心(AI Policy Coordination Center):邀集專家學者成立跨部門的人工智慧政策協調中心,進行人工智慧政策研議,向政府部門監管提出建言,為人工智慧的開發使用建立風險管理,並代表國家參與國際論壇。
3. 公眾參與及國際合作:政府機關與監管機構舉辦人工智慧論壇,提出人工智慧的議題與挑戰,邀請相關人士參與討論,並積極參與國際標準制定,進行國際合作。
我國科技部在2019年邀集各領域專家學者研議提出「人工智慧科研發展指引」,強調以人為本、永續發展、多元包容為核心,以八大指引為標竿,推動人工智慧發展。我國已有跨部會溝通會議對於人工智慧法制政策進行研討,可觀察各國軟性監管措施作為我國人工智慧風險管理及產業政策參考,與國際脈動建立連結。

相關連結
※ 以色列發布人工智慧監管與道德政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9133&no=67&tp=1 (最後瀏覽日:2025/11/23)
引註此篇文章
你可能還會想看
美國FCC新機上盒管制措施正式生效

  美國聯邦通訊委員會(Federal Communications Commission)於1998年要求有線電視業者將條件式接取(conditional access, CA)元件與機上盒的基本瀏覽設備分離;並於2003年採用CableCARD做為共通標準,希望藉由此「機卡分離」措施,達成有線電視服務層與設備層的結構分離,為設備層導入競爭與投資,以促進機上盒之功能創新與降低價格。   惟本措施2007年實施以來,因CableCARD安裝程序複雜、有線業者與機上盒製造商態度消極,致實行成效不彰。絕大多數的民眾仍未自購市售機上盒;且租用有線業者所提供機上盒者,大多未安裝CableCARD。   FCC故於2010年底發佈新命令,希望弭平有線訂戶租用與自購機上盒之落差;本命令於2011年8月生效,FCC表示將「嚴格執行」以下八項政策。有線業者應: (1)提供零售機上盒相容性之精確資訊; (2)提供非租用機上盒之訂戶同等的頻道套餐折扣; (3)無論租用或自購機上盒,CableCARD之價格必須一致,且明確揭露費用; (4)不得因租用或自購機上盒而行費率之差別待遇; (5)允許訂戶自行安裝CableCARD; (6)專業安裝人員必須到府完整安裝CableCARD; (7)提供具多重串流(multi-stream)效能之CableCARD; (8)確保得以收視所有的線性(linear)頻道。

新冠疫情下日本的數位經濟實踐之路

新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日   2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題   數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。   針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。   執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例   就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。   提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析   有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。   經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。

日本政府內閣於今年3月提出個人資料保護法修正草案

  為因應2016年正式上路實施之社會保障與納稅人識別號碼制度(社会保障・税番号制度)對於個人資料保護所產生之影響,日本政府內閣於2015年3月10日於國會提出個人情報保護法之修正案。   此次修正案主要分有六大重點,包含個資定義擴充與明確化、確保個資文件內容之正確性、強化個資保護規範內容、設立個人情報保護委員會、個資情報處理全球化,以及其他修正事項如未得當事人同意之第三人使用個資條件嚴格化等。   其中主要有兩項係與社會保障與納稅人識別號碼制度相關。首先是強化個資保護規範內容部分,由於社會保障與納稅人識別號碼制度將遇有個資資料庫使用情況,故新增個資資料庫之相關規範與罰則,行為人於未經授權或不當使用個資資料庫時,將可處1年以下拘役併科日幣50萬元以下之罰金,亦即當行為人違反個資法有關個資資料庫規定時,不但須支付罰金也須負刑事責任。   其次,擬設立直屬內閣總理大臣所轄之個人情報保護委員會,其委員組成人選須經參眾兩議院同意後,由內閣總理大臣任命之。委員會主要任務在於專責監督與監測政府各機關以及民間個資處理事業對於個資的傳遞、處理,並適時提出指導意見或建言。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP