歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度

根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。

為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。

由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。

本文同步刊登於TIPS網(https://www.tips.org.tw

相關連結
你可能會想參加
※ 歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9141&no=0&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】

  日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。   該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。   此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。   日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。

歐盟發布「人工智慧白皮書」以因應人工智慧未來可能的機遇與挑戰

  人工智慧目前正快速發展,不論是在醫療、農業耕作、製造生產或是氣候變遷等領域上,均帶來了許多改變,然而在人工智慧應用之同時,其也存在許多潛在風險如決策不透明、歧視或其他倫理與人權議題。   歐盟為求在全球競爭激烈的背景下,維護其於人工智慧相關領域的領先地位,並確保人工智慧技術於改善歐洲人民生活的同時,亦能尊重(respecting)人民權利,乃於今年(2020年)2月發布「人工智慧白皮書」(White Paper on Artificial Intelligence),將採投資及監管併用之方式,促進人工智慧應用與解決其相關風險,其對於未來促進人工智慧的應用(promoting the uptake of AI)與相關風險解決,計畫朝向建立卓越生態系統(An Ecosystem of Excellence)及信任生態系統(An Ecosystem of Trust)兩方面進行。   在建立信任生態系統中,歐盟提到因為人工智慧具有變革性的潛力,所以就信任的建立乃至關重要,未來歐洲人工智慧的監管框架除了須確保遵守歐盟法規外(包括基本權利保護與消費者權益維護之規範),對於高風險性之人工智慧應用,其將強制要求需於銷售前進行合格評定(mandatory pre-marketing conformity assessment requirement)。而有關高風險性之定義,歐盟於該白皮書指出須符合以下兩個要件: 考量人工智慧應用之一般活動特徵,其預計會有重大風險的發生,例如在醫療保健、運輸、能源和可能屬於高風險的公共領域;以及 在預期用途或應用上都可能對個人(individual)或企業(company)帶來重大的風險,特別是在安全性(safety)、消費者權益(consumer rights)與基本權利(fundamental rights)上。   歐盟委員會目前針對於以上白皮書之內容與附隨報告,將向公眾徵詢意見至今年5月19日。

美國藥品CGMP規範關於製劑部分修正之觀察

  美國食品及藥物管理局(Food and Drug Administration,FDA)於2008年9月8日針對現行優良藥品製造作業規範(Current Good Manufacturing Practice In Manufacturing, Processing, Packing or Holding of Drugs,藥品CGMP規範)中關於製劑的部分,公布了最新修正規則,並在同年的12月8日正式實施,希冀藉此能與其它FDA規範(例如:品質系統規範﹙the Quality System Regulation, 21 CFR part 820﹚)和國際性的CGMP標準(例如:歐盟CGMP規範﹙the CGMPs of the European Union﹚)相調和。   本次修正係採漸進式,而非一次性的方式為之,主要針對無菌處理(aseptic processing)、石棉過濾裝置(asbestos filters)之使用、以及第二者驗證(verification by a second individual)等做修正。   首先,針對無菌處理部分,要求設備及器具必須清潔、保養,且視藥品的本質不同,予以消毒和(或)殺菌,以避免故障或污染。對於可能遭微生物污染致影響其預定用途之原料、藥品容器或封蓋,要求應於使用前經過微生物檢驗。此外,尚新增生物負荷量測試(bioburden testing)於管制程序的列表中,以保障每批藥品之均一及完整性。   其次,關於石棉過濾裝置之使用方面,回應一直以來所存在著將使用於生產液態注射劑產品(liquid injectable products)之過濾裝置規範更現代化的需求,本次修正明訂,於今後禁止使用石棉過濾裝置,同時,亦將石棉過濾裝置於非纖維釋出性過濾裝置的定義之中刪除。   最後,有關第二者驗證部分,因應生產過程逐步自動化的潮流,本次修正於原有規範下增設規定指出,如以自動化設備執行秤重、測量、分裝、產量計算、設備清潔與使用記錄、生產與管控紀錄等之工作,且符合相關條文要求,並有一人檢查該設備是否如預設正常運作,則視為合乎原有規範下須有一人操作另一人檢查之規定。亦即修正後之執行,只需一人加以確認該自動化設備是否適當運作即為已足,毋須就過程中的每一步驟加以檢視,避免多餘人力之浪費。   總括來說,本次修正確保法規確實涵蓋現行業界的操作實務,同時並確立FDA將藥品CGMP規範與以現代化,並與國際標準調和之目標,為以漸進方式修訂藥品CGMP規範跨出重要的一步。

日本內閣通過AI研發及活用推進法草案

日本內閣於2025年2月28日通過並向國會提出《人工智慧相關技術研究開發及活用推進法案》(人工知能関連技術の研究開発及び活用の推進に関する法律案,以下簡稱日本AI法),旨在兼顧促進創新及風險管理,打造日本成為全球最適合AI研發與應用之國家。規範重點如下: 1. 明定政府、研究機構、業者與國民之義務:為確保AI開發與應用符合日本AI法第3條所定之基本原則,同法第4至第9條規定,中央及地方政府應依據基本原則推動AI相關政策,研發法人或其他進行AI相關研發之機構(以下簡稱研究機構)、提供AI產品或服務之業者(以下簡稱AI業者)及國民則有配合及協助施政之義務。 2. 強化政府「司令塔」功能:依據日本AI法第15條及第17至第28條規定,日本內閣下應設置「AI戰略本部」,由首相擔任本部長,負責制定及推動AI基本計畫,統籌推動AI技術開發與應用相關政策,並促進AI人才培育、積極參與國際交流與合作。 3. 政府調查及資訊蒐集機制:為有效掌握AI開發、提供及應用狀況,防止AI應用侵害民眾權益,日本AI法第16條規定政府應蒐集、分析及調查國內外AI技術研發及應用趨勢,並得基於上述結果,對研究機構或AI業者採取指導、建議或提供資料等必要措施。

TOP