因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下:
(1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。
(2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。
(3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。
本文為「經濟部產業技術司科技專案成果」
新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)的基本原則之一在於可歸責性(Accountability)之建立,原因在於個資保護的責任歸屬,是組織對個資的持有與控制所為的承諾與責任表示。因此,PDPA第11、12條之法遵責任,組織必須對所持有或控制的個資負責,並且需制定並實施資料保護政策、溝通並告知員工相關政策、及履行PDPA義務所必須施行之流程與作法。於組織責任而言,PDPA雖有強制性義務責任,但應忖量組織內部責任歸屬的措施,而非僅將責任落於遵守法律的程度,組織必須從合於法規的方法轉為基於責任歸屬的方法來管理個人資料。 從而,該指南在政策、人員、流程等領域中透過資料生命週期的循環,確立組織責任歸屬。從落實良好的責任制始於組織領導力的概念出發,設定組織管理高層之職責與調性,繼而規劃處理個資及管理資料風險的方法。並由組織人員治理面向,確立溝通資訊與員工培訓知識與資源。除此之外,也在特定流程設置上,紀錄個人資料流動,了解如何收集、儲存、使用、揭露、歸檔或處理個人資料為流程的首要任務,繼而確認資料保護層面主要的差距與需要改進的領域。再將資料保護實踐於業務流程、系統、商品或服務。
歐盟執委會提議檢討WEEE法令規範,並修正回收目標歐盟執委會於所公告之電子電機廢棄物回收法令檢視報告(Review of an EU Directive on Recycling Waste Electrical and Electronic Equipment)中建議,對於產品製造商之回收目標規範標準,應從現行概括固定值:每年人均4kg(4kg/capita per year)回收目標,改為變動式比例值:以現行市場商品平均量之65%,作為規範目標並且,由於法令規範課予產品製造商強制回收責任,市場實務上,也出現了產品製造商為了達到WEEE要求規範目標值,轉而向民間回收業者收購「回收憑證(Recycling Certificates)」,並且,因為供需失衡問題,造成回收業者隨意喊價的情形,也多所見聞。 而歐盟執委會為進一步落實環境保護政策,還是打算維持原案,提議對於WEEE規範內容進行檢討修改,並建議各會員國於國內法令增加誘因及鼓勵措施,導引協助產品製造商擴大回收體系、檢視改善回收管理系統,而更具能力對於提高目標規範,能夠落實遵循之。歐盟執委會此項法令修改提議,是否得以真正落實未來立法中,值得再加以觀察。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國專利與商標局拒絕以AI為發明人的專利申請美國專利與商標局於2020年4月27日拒絕人工智慧(AI)為發明人之申請並闡明發明人僅限於自然人。本案是美國專利與商標局首次拒絕人工智慧為發明人之申請,同時本最終審查意見(下稱:本意見書)也是第一次闡明發明人僅限於自然人。本意見書也被收錄在美國專利與商標局「人工智慧」、「首席專利審查官最終審查意見」之頁面,作為指標案例。 本意見書是在回應2020年1月20日專利申請申復案(Petition)之審查意見。回顧本專利申請案之基本資料表,發明人名字為「DABUS」、姓氏部分僅以括號註明「由人工智慧自行產生的發明」。本案法定代理人及申請人均為Stephan L. Thaler。Stephan L. Thaler表示,DABUS是一個神經網路系統且「有創意的機器」。美國專利與商標局表示,綜觀美國專利法的用詞(如:Whoever)及立法脈絡,均可得知發明人指的是自然人。具體而言,發明人必須是貢獻發明概念(Conception)的人,專利審查程序手冊(MPEP)定義「發明概念」是一個將發明人「創造行為之心智的完整呈現」(the complete performance of the mental part of the inventive act),僅有自然人具有「心智」(Mental/ Mind),因此發明人僅限於自然人。本審查意見又援引Beech Aircraft Corp. v. EDO Corp.判決,指出「發明人僅限於自然人」。所以,將專利申請基本資料表的姓名欄位填上「DABUS(由人工智慧自行產生的發明)」並不符合美國專利法第115條(35 U.S. Code § 115)。 本案於2019年7月29日提出,隨即於2019年8月8日被美國專利與商標局以「申請文件欠缺,不符合發明人與其繼受人之規範」(35 U.S. Code § 115和37 CFR 1.64)拒絕受理。幾番修正往返後,美國專利與商標局於2019年12月17日仍以「申請文件欠缺」不予受理,Stephan L. Thaler續行申復。美國專利與商標局於2020年4月27日做出本意見書。同一由DABUS創造的發明,但由Ryan Abbott作為申請人的案件,已被歐洲專利局和英國智慧財產局於2019年12月以雷同的理由拒絕。目前美國專利與商標局、歐洲專利局、英國智慧財產局面對人工智慧為發明人之專利申請,立場都是發明人僅限自然人。