因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下:
(1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。
(2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。
(3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。
本文為「經濟部產業技術司科技專案成果」
加拿大目前對基因改造產品的政策是採取自願標示制度。然而魁北克省的消費者贊成應對含有機因改造成份之食品實施強制標示。本月初,該省農林廳長在一項會議中指出,基因改造產品可能存有環境方面的風險並且有消費者疑慮的問題,因此應嚴謹以對,改採取強制性標示制度,讓消費者可以自行選擇。雖然目前聯邦官員以及其他省份仍贊同現行的自願標示制度,首長們 ( 大部分反對強制標示的立法 ) 同意繼續討論此議題。 此外,目前近日美國阿拉斯加州亦通過 Bill 25 法案,強制對基因改造魚類及相關魚類產品作明顯標示。這項法案通過後,該州成為美國第一個針對基因改造食品標示問題作明確立法的一州,該法案更成為美國第一個要求標示基因改造食品的法案。有關觀察家預期這個法案將會帶動美國各州對基因改造食品之標示進行必要的規範。根據美國 Rutgers 大學於 2004 年 11 月所作的民調顯示,約有 89 %的美國民眾希望基因改造食品應有明確的標示。
Google在Motorola下了賭注谷歌公司(下簡稱Google)和摩托羅拉移動控股公司(下簡稱Motorola)於2011年8月15日宣布,雙方已協議由GOOGLE以每股40.00美元,相較於Motorola上周五收盤價溢價63%的現金,總價約12.5億美元收購Motorola。 Motorola曾經是全球最大的行動電話製造商,目前在有線電視轉換器市場中亦仍然居於領導製造者的地位。此外,Motorola同時也身為Android的合作夥伴,並在無線通訊領域中,擁有大量專利。 Google並不打算透過這次的收購行動影響Motorola與Android之間的關係;Motorola還是Android的被授權業者之一,Android也還是保持開放。Google會以獨立營運的方式來經營Motorola於收購後的發展。不過這次的收購行動預計將會影響Android的生態發展,且會提高行動計算市場的競爭壓力。Google的高層對此次的收購行動表示,Morotola所擁有的專利,可協助Google於面對有關Android軟體系統的訴訟時,作為抵禦訴訟對手的工具。 其他的觀察者推測,Google計畫運用Motorola的硬體實力,來幫助Google建立屬於自己的Android-powered設備,以挑戰Apple主導市場的iPhone和iPads。 雖然此筆交易已經獲得雙方公司董事會的通過,但目前仍有待美國與歐盟等政府監管單位的批准以及Motorola股東的同意。但雙方預估,可望在2011年底或2012年初完成這筆交易。
加拿大聯邦政府預計2018年於全國落實碳排放費用徵收加拿大總理賈斯汀.杜魯道(Justin Trudeau)於2016年10月提出一項改革方案,要求全國各省份或地區於2018年開始,須擇一實施碳稅(Carbon tax)制度或碳交易系統(Cap-and-Trade System):前者,聯邦政府將制定徵收下限,從2018年每噸10元,逐年提高10元,直至2022年每噸50元為止;至於碳交易系統,則須設立嚴格管控規範,以達聯邦政府實施碳稅制度所得減少碳排放量之預期值。同時,杜魯道更進一步表示,費用將交由各省區自行向排放者進行徵收,並可就其所得作自由運用,反之,倘若未確實執行該項政策者,聯邦政府則將強制介入實施。 事實上,綜觀國際間徵收碳稅制度,主要有兩種類型:一類為全國落實碳稅徵收,例如:荷蘭、丹麥、德國或南韓等,其中尚可再細分是否作為一獨立稅目進行徵收,前述荷蘭及丹麥二國,即直接設立碳稅進行徵收,至於德國與南韓,則是將碳排放作為能源稅之計算因子之一作收取;另一類為國內部分地區自行決定收取,如:美國加州地區及原先加拿大不列顛哥倫比亞省與魁北克省等。 至於未來觀察重點,應在於加拿大實施上述碳排放費用徵收政策後,勢必對於民生消費習慣具相當程度影響,諸如:暖氣、民生用電、交通工具燃料、公共運輸、食品、服裝或其他消費服務,預期均有相應之漲幅,再者,各省區之經濟政策及投資環境,亦可能有不小程度之衝擊,此兩處後續發展,均值得作持續性觀察。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」