美國FTC通過「禁止企業簽訂競業禁止契約」的最終規定

美國聯邦貿易委員會(下稱FTC)於2024年4月23日通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」) ,FTC認為「簽訂或執行競業禁止契約」違反《聯邦貿易委員會法》(Federal Trade Commission Act)第5條之防止不公平競爭之違法手段之規定。最終規定所禁止簽訂競業禁止契約的對象廣泛,包含獨立承包商、為營利企業工作的員工,並將可能取代其他規範競業禁止契約效力之州法。不過,尚有部分情形將排除最終規定的適用,如:

(1)公司與高階主管的既有競業禁止契約仍屬有效,而高階主管被定義為「年收入超過 151,164 美元(約新臺幣4,927,492元)且擔任決策職位」的員工,如總裁、首席執行長或其他擁有企業重大決策權的職位。

(2)允許出於善意收購企業的雙方簽訂競業禁止契約。

(3)因FTC對於某些產業無監管權,因此該等產業不適用於禁止簽訂競業禁止契約的最終規定,如非營利組織、銀行、保險公司以及航空公司。

FTC指出最終規定於美國聯邦公報上公布120天(約4個月)後生效,並要求現已簽訂競業禁止契約之雇主負有通知義務,雇主須透過數位(電子郵件或簡訊)或紙本方式,明確地通知現任、前員工,其既有的競業禁止契約即將失效。

但美國商會(U.S. Chamber of Commerce)已聲明表示該最終規定有超出FTC管轄範圍之疑慮,故後續可否執行最終規定,仍有待密切關注。

為因應FTC大範圍禁止簽訂競業禁止契約之法制方向,建議公司可參考資策會科法所發布之「營業秘密保護管理規範」以系統性方式檢視不同面向的既有管理作法,如人員面、內容面等,以落實對於營業秘密的保護。

1.關於文件的管理建議
先盤點紙本及數位機密文件;再設定文件之接觸權限。

2.關於人員的管理建議
留意人員的智財教育訓練;人員的保密或智財權歸屬契約,確保契約約定已納入公司想保護的機密資訊,比如客戶或供應商名單及聯絡資訊、產品規格、製程等;以及離職管理。

本文同步刊登於TIPS網站(https://www.tips.org.tw)。

相關連結
你可能會想參加
※ 美國FTC通過「禁止企業簽訂競業禁止契約」的最終規定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9166&no=0&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

日本發布以人為本AI社會原則

  日本內閣於2018年6月15日決議組成跨部會之統合創新戰略推進會議,並於2019年3月29日發布AI戰略,其中的倫理面向為以人為本之AI社會原則(下稱AI社會原則),希冀藉有效安全的活用AI,推動「AI-Ready 社會」,以實現兼顧經濟發展與解決社會課題的「Society5.0」為最終目標。   為構築妥善應用人工智慧的社會,AI社會原則主張應尊重之價值理念如下: (一) 尊重人類尊嚴的社會:AI應作為能激發人類發揮多樣能力和創造力的工具。 (二) 多元性和包容性的社會(Diversity & Inclusion):開發運用AI以共創多元幸福社會。 (三) 永續性的社會(Sustainability):透過AI強化科技,以創造能持續解決社會差距與環境問題的社會。   而AI社會原則核心內容為: (一) 以人為本:AI使用不得違反憲法或國際保障之基本人權。 (二) AI知識(literacy)教育:提供必要的教育機會。 (三) 保護隱私:個人資料的流通及應用應妥適處理。 (四) 安全確保:把握風險與利益間之平衡,從整體提高社會安全性。 (五) 公平競爭確保:防止AI資源過度集中。 (六) 公平性、說明責任及透明性任。 (七) 創新:人才與研究皆須國際多樣化,並且建構產官學研AI合作平台。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

我國遊戲軟體著作權爭議探討

TOP