美國國家創新與創業諮詢委員會發布透過創業提高競爭力美國創新策略報告, 敦促政府消除創業活動障礙,促進新創公司發展

美國國家創新與創業諮詢委員會(National Advisory Council on Innovation and Entrepreneurship, NACIE)於2024年2月8日發布「透過創業提高競爭力:美國創新策略」(Competitiveness Through Entrepreneurship: A Strategy For U.S. Innovation)報告,其確定改善與協助美國創業精神之三大關鍵領域,並提出十項建議,敦促政府消除創業活動障礙,增加新創公司獲得人才、資金之機會。

NACIE由企業家、創新者、投資人、學者與經濟發展領導者組成。由商務部長責成其確定如何使美國繼續成為改變典範之創新來源、以及將創新推向市場之泉源。NACIE於此報告中所確認之三大關鍵領域與十項建議之內涵簡述如下:

(1)關鍵領域1:發展未來產業(Growing the Industries of the Future)
美國雖於能源、自動化、人工智慧、量子科學與生物科技等創新領域取得商業上之成功,但對於產業創新仍存有四大威脅,包括國家機關間之協調、研發投資之持續減少、大學研發產品商業化受阻與境外製造之風險。

建議1:
成立國家創新委員會(National Innovation Council),由科學技術政策辦公室主任(Director of the Office of Science & Technology Policy)擔任主席,成員包括相關內閣秘書、國家科學基金會(NSF)主任、美國專利商標局(USPTO)局長與美國首席技術長(Chief Technology Officer, CTO),倡導全國創新與創業並協調相關聯邦政府活動。

建議2:
恢復與擴大國家投資,使創新登月計畫成為可能—大幅增加聯邦對關鍵技術之研發投資,使美國在未來成長產業中發揮領導作用。

建議3:
啟動國家創新加速器網路(National Innovation Accelerator Network, NIAN)—一個由加速器、輔導、投資計畫與創業支持組織組成之虛擬“網路中之網路”(“network of networks”),旨在大規模增強社會各方面之包容性創業能力。

建議4:
為聯邦資助之研究與開發提供智慧財產權激勵措施;制定政策與激勵措施,促進聯邦政府資助之創新廣泛傳播與商業化;並促進將聯邦資助創新進行國內製造。

建議5:
積極與創新者、企業家與資助者合作,確保其擁有足夠之智慧財產權與網路安全教育與資源來保護其之想法與業務,並接受培訓以能夠識別與防止外國公司或國家潛在之智慧財產權盜竊。

(2)關鍵領域2:獲取資本(Accessing Capital)
美國前七大上市公司全部皆由創投所支持,於1990至2020年間,相較於私部門之雇用率上升40%,同一時期由創投支持之公司雇用率成長達960%;美國創投規模亦居於全球之冠,甚至某些城市之創投規模已超過其他國家,如2021年紐約之創投規模即相當於印度全國之規模。惟美國創投之問題在於投資機會未能平等,如女性、有色人種、非都會區較難獲得創投投資。

建議6:
透過制定新聯邦計畫,擴大企業家之成長資金管道,以支持各地更多企業家,特別是通常未受足夠服務之企業家。

建議7:
透過擴大直接資助與基於激勵(incentive-based)之聯邦計畫,增加資金並為新興基金經理提供機會,以便於全國更多處皆能有更多具有各種人口背景與專業之投資人。

建議8:
向投資於研發、種子輪或A 輪融資新創公司、女性與少數族群擁有之新創公司、以及保護與授權智慧財產權之公司與個人提供年度稅收抵免與激勵措施。

(3)關鍵領域3:培養創業人才(Developing Entrepreneurial Talent)
人才對於創業生態系之完整建構至為重要,美國一半以上之10億美元公司由移民創辦,三分之二之獨角獸公司由移民創辦或共同創辦,這些公司之創辦人中有25%是國際學生。

建議9:
透過提供導師、支持服務資金以及幫助吸引與培養關鍵人才,全面支持新高潛力企業家,旨在增加美國新創公司之數量與影響力。

建議10:
有系統地提供支持創業之工具與資源,打破任何人、任何地方之障礙,為新創業企業做出貢獻,以便美國未來能更快地創新。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國國家創新與創業諮詢委員會發布透過創業提高競爭力美國創新策略報告, 敦促政府消除創業活動障礙,促進新創公司發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9177&no=0&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
科法觀點
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

德國公布NAP II,要求能源及工業部門減少二氧化碳排放量

  為達到京都議定書 將二氧化碳排放量減量控制到 1990 年排放量的 20 %目標, 歐盟持續祭出多項政策措施,近一年來並已實施碳排放證交易機制。 所謂的碳排放證交易機制係指,業者若能成功減少污染即可出售多餘的碳排放證,而排放過多二氧化碳者卻必須購買碳排放證。為達成前揭目標,所有歐盟會員國均應依據歐盟的國家分配計畫( Nationalen Allokationsplan ),於其內國推動實施。   在歐盟架構下,德國政府於日前公布第二階段的 NAP II ,以接續目前第一階段、將持續至 2007 年的 NAP I 。透過 NAP I 及 NAP II ,所有產業-包括能源、工業、交通( Verkehr )、家戶( Haushalte )、以及手工業( Gewerbe )、商業及服務業-均將被要求共同致力於二氧化碳減量的目標,德國政府也一一就各產業訂出排放標準。   基本上, NAP II 係有關德國能源業和工業自 2008 年至 2012 年止有關二氧化碳排放量的基本原則,重點在能源業及工業的二氧化碳排放控制,此乃因這兩個產業每年的二氧化碳排放量高達總排放量的 60 %。 NAP II 對工業的減量要求較為寬厚,只須減少百分之一點二五的排放量,能源業卻必須減量百分之十五。德國環保部長表示,工業面對市場上激烈的競爭,可以少負擔一些氣候保護的成本。此外,為了鼓勵能源業者投資環保設備減少污染,可同時生產電力和熱能的電廠二氧化碳排放量管制將比照工業,反之,老舊的高污染燃煤電廠獲得的碳排放證,比起一般的能源業還要再縮減百分之十五。   雖則 NAP I 、 NAP II 的實施對德國整體產業均形成衝擊,不過這個從環保概念出發的政策,卻也將促使德國產業在未來幾年產生結構性的調整,政府與民間部門為了達到二氧化碳排放減量的目標,必將投入新技術的研究與發展,進而帶動永續、潔能、環境友善( eco-friendly )及綠色科技的發展。

日本2018年7月27日發布最新3年期網路安全戰略(サイバーセキュリティ戦略)

  日本網路安全戰略本部(サイバーセキュリティ戦略本部)於2018年7月27日發布最新3年期網路安全戰略(サイバーセキュリティ戦略),其主要目的係持續實現「提昇經濟社會活力與永續發展」、「實現國民安全且安心生活之社會」、「維持國際社會和平、安定與保障日本安全」三大目標,並透過7月25日同樣由網路安全戰略本部(サイバーセキュリティ戦略本部)發布之網路安全年度計畫2018(サイバーセキュリティ2018),執行下述資安對策的細部計畫與做法。   以下簡述依據日本三大資安目標所提出之重要資安對策: 提昇經濟社會活力與永續發展 (1) 推動可以支援創造新價值之網路安全措施。 (2) 實現可以創造價值之網路安全供應鏈。 (3) 架構安全物聯網(Internet of Things, IoT)系統。 實現國民安全且安心生活之社會 (1) 制定網路犯罪之因應對策。 (2) 官民一體共同防護關鍵基礎設施。 (3) 強化與充實政府機關之網路安全。 (4) 確保大學能建構安全與安心之教育與研究環境。 (5) 展望2020年東京奧運與未來之措施。 (6) 強化情資共享與合作體制。 (7) 強化應變大規模網路攻撃事態之能力。 維持國際社會和平、安定及保障日本安全 (1) 堅持自由、公平且安全之網路空間。 (2) 建立支配網路空間之法律秩序。 (3) 強化日本網路防禦力、抑制網路攻擊能力與掌握狀況之能力。 (4) 強化掌握網路空間狀況之能力。 (5) 國際合作。

美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

TOP