美國食品藥物管理局發布《品質管理系統法規最終規則》

美國食品藥物管理局(U.S. Food and drug administration, FDA)於2024年1月31日發布《品質管理系統法規最終規則》(Quality Management System Regulation(QMSR)Final Rule),主要內容為修改美國聯邦法規(Code of Federal Regulations, CFR)第21章第820條,品質系統規範(Quality System Regulation, QSR)中現行優良製造規範(Current Good Manufacturing Practice, cGMP, CGMP)內容,以降低美國國內法規與國際醫療器材品質管理系統標準ISO 13485的差異,達到減輕醫材製造商、進口商的監管負擔之效。

與美國QSR相比,ISO 13485對「風險」與「透明度」規範的要求更加嚴格,故此最終規則主要將QSR中風險管理與透明度的規範依照ISO 13485進行補足。並增修QSR中未出現於ISO 13485中或即將取代ISO 13485中同義的名詞或術語的定義,用以降低原先QSR與ISO 13485的差異。同時增設對記錄保存、標籤和資訊可追溯性要求等FDA認為ISO 13485未涵蓋完全的額外規定,用以完善整體規則完整性。

該最終規則預計於2026年2月2日正式實施。FDA預估此次修訂會有效降低醫材製造、進口商的潛在金錢與時間成本,FDA提供近3年的緩衝期,即希望相關工作人員與醫材製造商能熟悉並遵循新的QMSR。未來FDA會追蹤並評估是否應將ISO13485的變更納入QMSR中,以促進醫材監管的一致性,並為病人及時推出安全、有效且高品質的醫材。

相關連結
※ 美國食品藥物管理局發布《品質管理系統法規最終規則》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9181&no=645&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

美國放棄建立全國性免費無線寬頻網路計畫

  四年前,由M2Z網路公司(m2znetworks)向FCC建議,以AWS頻段(1.9GHz~2.1GHz建立)建立高速寬頻網路,並將運用其中一部份,建立速率達768Kbps的網路服務,在十年的期間內,免費提供公眾使用。M2Z計畫與美國各地申請BTOP(Broadband Technology Opportunities Program,寬頻技術機會計畫)補助的地方政府合作,建立免費無線寬頻服務。後續營運的支出將以廣告、與合作伙伴的收益及自有資金支應,並將支付收益的5%給美國財政部。   在經歷諸多考量後,2010年9月,FCC認為這並非一個好的政策措施,並向M2Z公司表示,將不支持這項計畫,而將繼續透過全國寬頻計畫以及普及服務基金的運作,促使寬頻網路普及化。   當M2Z提出這項計畫時,引起非常多的爭論,因其計畫初期提出將建立過濾色情內容的機制,使其成為家庭友善的服務。之後,包括頻譜使用的干擾以及768Kbps的免費網路是否符合需求,也引起其他網路服務商的反對,。而FCC所公布之國家寬頻計畫,其基礎目標是4Mbps之寬頻接取,因此M2Z的計畫顯然已經不合乎FCC的整體規劃。   消息公開之後,許多無線產業紛紛認同FCC的看法,如反對本項計畫最力的CITA無線協會即發表聲明表示,FCC放棄這項構想是正確的決定,因為M2Z的計畫將不能充分發揮AWS頻段的價值,同時提供的服務速度也太緩慢不符合公眾利益。FCC應回歸國家寬頻計畫,合理的規劃整體頻譜資源,釋出更多頻譜提供無線寬頻市場新的機會。

歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

日本正式敲定今年版智慧財產權推動計畫

  日本為了提高產業競爭力,於 2002 年提出智財戰略計畫,並於內閣中設戰略本部,由首相小泉純一郎領導,每年並仔細擬定當年度的智慧財產權推動計畫。在今年剛定案的「二零零六年智慧財產權推動計畫」中,以開發或利用大學的智慧財產及加強與產業界的合作並提出對付仿冒品等的對策為重點。   根據「二零零六年智慧財產權推動計畫」,未來將加強整合大學內部的大學智慧財產本部與民間的技術移轉機關( TLO ),以便集中運用人才、研究成果。計畫也將建立一套可簡便利用專利或論文的資料庫系統,預期明年四月起可供利用。   日本的大學院校去年在國內取得專利權的有三百七十九件,大學將專利技術移轉至民間組織件數在二零零四年度有八百四十九件,藉由技術轉移所得收入為三十三億日圓,雖然這些表現相較於以往年度均有所成長,但日本不論在專利件數或收益上,都與美國相差甚遠,日本政府為了加強國際競爭力,認為有必要加強產、學界的合作,故「二零零六年智慧財產權推動計畫」也規劃,大學院校若有意到海外申請專利權,政府將補助申請費;此外,原本只限定優惠大學正副教授的專利申請費減免措施,也將及於研究所的學生等,以期促進大學內部研發。

TOP