美國國土安全部發布「2024人工智慧路線圖」,確保AI安全開發與部署

美國國土安全部(Department of Homeland Security, DHS)於2024年3月17日發布「2024人工智慧路線圖」(2024 Artificial Intelligence Roadmap)(下稱AI路線圖),設立三大目標,將偕同旗下機關與產官學研各界合作,確保AI的安全開發與部署,保護國家關鍵基礎設施安全,以強化國家安全。

美國拜登總統於2023年10月30日簽署的第14110號總統行政命令《安全可靠且值得信賴的人工智慧開發暨使用》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)(下稱AI總統行命令),要求DHS應管理使用於關鍵基礎設施與資通安全的AI、制定全球AI標準並推廣、降低利用AI造成具有大規模殺傷力武器攻擊之風險、保護AI智慧財產權、以及吸引AI領域人才,以促使、加強AI開發與部署等事項。為踐行上述事項,DHS制定AI路線圖,其三大目標如下:

(1) 負責任的使用AI以推進國安任務(Responsibly Leverage AI to Advance Homeland Security Mission):透過建置AI基礎建設、建立AI系統測試與評估(Testing and Evaluation, T&E)、推動AI人才培育計畫等行動措施,帶領主管機關負責任的使用AI,以保護國家安全及避免AI對關鍵基礎設施的風險,確保AI於使用過程中係尊重個人隱私、保護公民權利與自由。

(2) 促進AI安全與資安(Promote Nationwide AI Safety and Security):利用AI技術改善與預防關鍵基礎設施之安全與資安風險、制定關鍵基礎設施之AI使用指引、以及成立AI安全與資安委員會(AI Safety and Security Board, AISSB),彙集產官學研各界專家意見。

(3) 透過擴大AI國際合作來引領AI發展(Continue to Lead in AI Through Strong, Cohesive Partnerships):將透過與產官學研各界合作,擴大AI的國際合作,並持續與公眾進行意見交流與分享,推廣AI政策或相關行動措施;DHS亦將持續與參眾議院及其他主管機關匯報AI相關之工作進度與未來規劃,以提升部門AI的透明度,並建立公眾對AI的信任。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國國土安全部發布「2024人工智慧路線圖」,確保AI安全開發與部署, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9184&no=67&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
科法觀點
你可能還會想看
歐盟研究揭示研發策略新方向 將以氣候變遷、能源、健康與中小企業為主軸

  歐盟執委會於6月公布新的一般策略架構(Common Strategic Framework,CSF),在歐盟第七期研究架構計畫(FP7)於2013年告一段落後,CSF鎖定的研發策略方向仍會繼續,然此同時也引發一些不同的意見。為此執委會於6月間邀集產官學研進行討論,並於6月底揭示了新的計畫—Horizon 2020—。   歐盟執委會早於2011年初即發佈歐盟競爭力白皮書,揭櫫了未來新一期研究架構計畫之政策方向,其對於現有政策結構與資助機制有不小的衝擊。   新的CSF以氣候變遷、能源、健康與中小企業為研發資助之主軸,而為瞭解並蒐集各界包括大學、國有研究機構、各國政府以及企業界的意見,執委會於今年2月間發布了意見徵詢綠皮書以預先蒐集各界意見。根據執委會的規劃,新的CSF除要求教育體系應跟隨業界研發人才需求的腳步外,更鼓勵中小企業未來投入創新活動,因為執委會發現,歐洲的企業研發投資經費總額,僅有日本和南韓的一半。   歐盟執委會表示,氣候變遷、能源、健康與中小企業為未來研究資源資助與投入的方向,以呼應歐洲民眾的期待。此外,針對目前計畫所存在的行政效率不彰、缺乏透明性及計畫遲延等問題,也將列入未來改善重點,為此,歐洲議會已於6月進行FP7期中檢討時通過解決方案,日後將靠各國分別於歐盟及國家層級的計畫執行與管理中落實。   Horizon 2020計畫將於2014至2020年間斥資800億歐元於研發與工作機會的創造,以提升歐盟競爭力,後2013時期(post-2013)歐盟則將致力於化解計畫執行的分歧,確實協調各國投入新計畫的步調一致性。

荷蘭音樂檔案交換案判決ISP業者勝訴

荷蘭娛樂產業權利維護協會 (The Dutch Protection Rights Entertainment Industry Netherlands, BREIN) 起訴 5 家 ISP 業者遭致敗訴判決,起訴原因是該 5 家 ISP 業者拒絕交出 42 名疑似利用其網路進行非法歌曲檔案交換的使用者名單。 BREIN 只能追蹤到上述嫌疑犯的 IP 位址。   法院判決認為 BREIN 針對個人蒐證部份犯有重大錯誤。 BREIN 乃委由美國 Media Sentry 就網路上侵害著作權的公開論壇 (Popular Online Forum) 及 P2P 服務進行監測,並追蹤未經授權的線上散佈。但荷蘭法院認為, Media Sentry 僅檢測 Kazza 的共享檔案夾,但這些檔案夾中亦會包括個人使用檔案,因此,原告所提出檔案證據並不足以證明被告將有侵權之虞的歌曲檔案上傳。   當然,本案並非代表荷蘭 ISP 業者的勝利,法院指出, ISP 業者仍有可能依法律要求而交出其網路使用者個人資料。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

英國交通部推出MaaS實務準則,達成兼顧永續與包容的次世代MaaS服務

英國交通部(Department for Transportation, DfT)於2023年8月30日提出「交通行動服務(MaaS)實務準則(Mobility as a Service: code of practice)」,內容針對MaaS之提供商,提出產品及服務建議。MaaS實務準則涵蓋包含以下五個面向,以提供MaaS廠商具體明確的產品設計及營運建議: 1. 交通包容性與近用性(accessibility),例如應盡力避免產品之AI演算法產生偏見、確保AI學習資料無偏差;產品介面應提供視覺、聽覺輔助功能;針對身障民眾應提供適當之交通路線建議,以及應提供偏鄉、無網路區域非線上(offline)服務管道; 2. 低碳運輸之推廣,如納入更多步行、單車等環保交通選項; 3. 友善之多元支付方式,如現金、數位支付、定期套票,並整合火車、地鐵、客運、公車之支付系統; 4. 資料分享與資料安全並重,保障使用者隱私,如採用公認之資料安全標準以及與同業簽訂資料共享契約; 5. 重視消費者權益保障,鼓勵平台間公平競爭,如釐清各參與者間之責任,避免消費者投訴無門,以及提供線上及非線上聯絡窗口,及時處理消費者需求等。

TOP