美國國土安全部(Department of Homeland Security, DHS)於2024年3月17日發布「2024人工智慧路線圖」(2024 Artificial Intelligence Roadmap)(下稱AI路線圖),設立三大目標,將偕同旗下機關與產官學研各界合作,確保AI的安全開發與部署,保護國家關鍵基礎設施安全,以強化國家安全。
美國拜登總統於2023年10月30日簽署的第14110號總統行政命令《安全可靠且值得信賴的人工智慧開發暨使用》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)(下稱AI總統行命令),要求DHS應管理使用於關鍵基礎設施與資通安全的AI、制定全球AI標準並推廣、降低利用AI造成具有大規模殺傷力武器攻擊之風險、保護AI智慧財產權、以及吸引AI領域人才,以促使、加強AI開發與部署等事項。為踐行上述事項,DHS制定AI路線圖,其三大目標如下:
(1) 負責任的使用AI以推進國安任務(Responsibly Leverage AI to Advance Homeland Security Mission):透過建置AI基礎建設、建立AI系統測試與評估(Testing and Evaluation, T&E)、推動AI人才培育計畫等行動措施,帶領主管機關負責任的使用AI,以保護國家安全及避免AI對關鍵基礎設施的風險,確保AI於使用過程中係尊重個人隱私、保護公民權利與自由。
(2) 促進AI安全與資安(Promote Nationwide AI Safety and Security):利用AI技術改善與預防關鍵基礎設施之安全與資安風險、制定關鍵基礎設施之AI使用指引、以及成立AI安全與資安委員會(AI Safety and Security Board, AISSB),彙集產官學研各界專家意見。
(3) 透過擴大AI國際合作來引領AI發展(Continue to Lead in AI Through Strong, Cohesive Partnerships):將透過與產官學研各界合作,擴大AI的國際合作,並持續與公眾進行意見交流與分享,推廣AI政策或相關行動措施;DHS亦將持續與參眾議院及其他主管機關匯報AI相關之工作進度與未來規劃,以提升部門AI的透明度,並建立公眾對AI的信任。
本文為「經濟部產業技術司科技專案成果」
在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
專利連結(Patent Linkage)-藥品研發與競爭之阻力或助力? - 談藥品查驗登記程序與專利權利狀態連結之發展 美國國家寬頻計畫簡介 日本發布網路安全相關法令問答集日本國家網路安全中心(内閣サイバーセキュリティセンター,或稱National Information Security Center, NISC)於2020年3月2日發布「網路安全相關法令問答集」(サイバーセキュリティ関係法令Q&Aハンドブック),以回應日本內閣在2017年7月27日通過的「網路安全戰略」(サイバーセキュリティ戦略)中所提及應整理相關法制,以利企業實施網路安全措施與對策之決定。因此,內閣網路安全戰略本部(サイバーセキュリティ戦略本部)普及啟發‧人才培育專門調查會(普及啓発・人材育成専門調査会)於同年10月10日成立工作小組,針對網路安全相關法令進行推動與調查工作。 本問答集內容涉及13項法律議題,包括議題如下: 說明網路安全基本法(サイバーセキュリティ基本法)網路安全之定義與概要; 以公司法為核心,從經營體制觀點說明董事義務,例如建立內部控制機制,以確保系統審核與資料揭露之適當性; 以個人資料保護法為核心,例如說明個人資料的安全管理措施; 以公平交易法(不正競争防止法)為核心,說明在營業秘密的保護範圍內,利用提供特定資料與技術手段,來實施迴避行為係屬無效; 以勞動法規為核心,說明企業採取網路安全措施之組織與人為對策; 以資通訊網路、電信業者等為中心,說明IoT相關法律問題; 以契約關係為中心,說明電子簽章、資料交易、系統開發、雲端應用服務等議題; 網路安全相關證照制度,例如資訊處理安全確保支援人員; 說明其他網路安全議題,例如逆向工程、加密、訊息共享等; 說明發生網路安全相關事故之因應措施,例如數位鑑識; 說明當網路安全糾紛有涉民事訴訟時應注意之程序; 說明涉及網路安全之刑法規範; 描述日本企業在實施網路安全措施時,應注意之相關國際規範,例如歐盟一般資料保護規則(General Data Protection Regulation, GDPR)與資料在地化(Data Localization)等議題。 此外,隨著網路與現實空間的融合,各產業發展全球化,相關法規也日益增加,惟網路安全相關法規,在原無網路安全概念與相關法制的日本法上,卻鮮少有較為系統化的概括性彙編與解釋文件。因而盤點並釐清網路安全相關法令則成為首要任務,故研究小組著手進行調查研究,並將調查結果—「網路安全法律調查結果」(サイバーセキュリティ関係法令・ガイドライン調査結果)與「第四次關鍵基礎設施資訊安全措施行動計畫摘要表」(重要インフラの情報セキュリティ対策に係る第4次行動計画)作為本問答集之附錄文件以資參酌。最後,NISC期待透過本問答集,可作為企業實施具體網路安全對策之實務參考。