英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險

英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險

資訊工業策進會科技法律研究所
2024年03月11日

人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。

壹、事件摘要

英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。

AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。

貳、重點說明

AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容:

一、AI保證之適用範圍

(一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。

(二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。

(三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。

(四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。

二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。

(一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。

(二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。

(三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。

三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。

(一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。

(二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。

(三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。

(四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。

(五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。

(六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。

四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項:

(一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。

(二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。

(三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。

(四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。

(五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。

五、建構AI保證的步驟(Steps to build AI assurance)

(一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。

(二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。

(三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。

(四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。

(五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。

參、事件評析

AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。

隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。

本文為「經濟部產業技術司科技專案成果」

※ 英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=9187&no=0&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件

  2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。   在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。   英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。   根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。   指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。

歐洲專利局2019年專利指數

  歐洲專利局(EPO)於2020年3月12日公布「2019年專利指數」(EPO Patent Index 2019),歐洲專利局在2019年全年受理超過18萬件的專利申請案件量,達到歷史新高,其中以來自中國大陸的申請案件量成長29.2%為主要來源;在專利領域方面則以數位通訊及電腦科技兩大領域的申請案件量,分別較前一年度成長19.6%及10.2%最為顯著,反應全球積極布局數位轉型相關科技趨勢。   根據歐洲專利局的統計,數位通訊領域專利申請量的成長,在十年來首次超越醫學技術,主因為反應世界各國積極發展5G通訊技術的腳步,來自中國大陸的專利申請量在通訊技術領域帶頭成長了64.6%,在專利申請人則以華為居首,其次為愛立信,高通第三。而在電腦科技領域,則以AI相關技術包含機器學習、模式識別(pattern recognition)、圖像識別與生成、資料檢索等技術為大宗,專利申請量成長率由美國領軍為13.6%,在專利申請人則以Alphabet(Google母公司)居首,接著為微軟、三星,華為第四。   藉由「2019年專利指數」可以發現兩大趨勢,其一為數位通訊及電腦科技領域專利申請的快速增長,顯示各國布局數位轉型已蓄勢待發,並以5G與AI兩大技術為數位轉型核心;其二為在數位轉型科技領域的專利申請人中,中國大陸在數位科技的積極布局,特別是華為以3524項專利申請案位居全球專利申請人之首,反映中國在全球數位轉型浪潮中的積極布局。

歐盟公布資料保護相關指令適用意見書

  由歐盟二十七個會員國資料保護主管機關組成的第二十九條資料保護工作小組(The Article 29 Working Party)最近公布其應適用何國資料保護法規之意見書。   歐盟資料保護指令(EU Data Protection Directive)第四條對於蒐集或處理個人資料所應適用之法規有所規範,依該條規定,機構必須依其成立之國別適用該國資料保護法規;機構若於其他國家裝置設備處理資料,則須遵守設備所在地之法令。   隨著全球化的趨勢與新興科技的發展,目前處理資料機構之運作方式已與當初制定指令時有所不同,許多機構在世界各國設置營運點,向全球各地提供各類型服務,尤其是網際網路的發展,使得遠端服務及在虛擬環境下分享個人資訊更為容易,但同時也增加辨識資料處理所在地之困難度,因此工作小組提出該意見書,希望藉此釐清資料保護指令第四條之適用。   工作小組於該意見書中指出,資料保護指令所指的應適用法規,並非資料控制者(data controller)所在地之法規,而是附屬於該資料控制者並實質進行資料處理之機構的所在地法規。蓋因同一資料控制者可能在數國成立附屬機構,在此種狀況下判別適用法規的標準,應視實際上相關資料處理活動的發生地,亦即處理資料機構所在地。   而針對處理個人資料所使用之設備,工作小組表示,即使處理資料之機構並未擁有設備,而使用該設備處理個人資料時,亦可適用指令第四條之規定,需遵守設備所在地之相關法規;但工作小組同時特別釐清,以電信電纜或郵政服務等方式傳輸資料並不會落入資料保護法規之範疇。

加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢

加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。

TOP