歐美貿易與技術理事會(EU-U.S. Trade and Technology Council,TTC) 2024年4月4日至5日在比利時魯汶舉行第6屆部長會議,依據會後聯合聲明,雙方針對數位轉型所帶來的機遇與挑戰,同意在新興技術和數位環境等面向促進雙邊貿易和投資、進行經濟安全合作,並捍衛人權價值。未來雙方將針對AI、半導體、量子技術和6G無線通訊系統等制定互通機制及標準,簡述如下:
(1) AI技術:採取「風險基礎方法」(risk-based approach)實施「可信任人工智慧和風險管理聯合路徑圖(Joint Roadmap for Trustworthy AI and Risk Management),提高透明度以降低公民及社會使用AI的風險;更新關鍵AI術語清單(a list of key AI terms),減少雙方於概念認知上的誤差;承諾建立對話機制,以深化雙邊合作。
(2) 半導體:為促進半導體供應鏈韌性(resilience)與協調(coordination),將延長實施「供應鏈早期預警機制」(joint early warning mechanism)及「透明機制」(transparency mechanism)兩項行政安排,共同解決半導體產業市場扭曲、供應鏈過度依賴特定國家等挑戰。
(3) 量子技術:雙方將成立量子工作小組(Quantum Task Force),以制定統一量子技術標準,加速技術研發。
(4) 6G技術:雙方通過「6G願景」(6G vision),並對於未來研究合作簽署行政安排(administration arrangement),建立6G技術開發共同原則。
歐美雙方期望透過上述作法,促進半導體和關鍵技術研發和供應鏈多元化,以確保經濟安全及落實數位轉型,確保歐美於新興技術和數位環境之領導地位。
本文為「經濟部產業技術司科技專案成果」
日本《科學技術指標》為文部科學省直接管轄之國立實驗研究機關「科學技術與學術政策研究所(NISTEP)」於每年度發布,主要為讓閱讀者基於客觀而定量的數據,體系性地掌握日本國內科學技術活動的基礎資料,將科學技術活動區分為「研究開發費」、「研究開發人才」、「高等教育與科技人才」、「研究開發產出」、以及「科技與創新」等5個類別,同時制定約180個指標以表達日本國內狀況。本年度公布的《科學技術指標2019》,則新增了「日本與美國各部門擁有博士學位者」、「各產業研究人才集中度與高端研究人才活用程度間之關係」、「主要國家取得博士學位之人數的變動狀況」、「運動科學研究類論文動向」、「主要國家貿易額度的變動狀況」、「各國與各類型獨角獸企業數」等20個指標。 依《科學技術指標2019》分析,日本的研究開發費與研究者人數於日、美、俄、法、英、中、韓等七個國家中皆位居第三,論文數則為世界排名第四,受高度矚目的論文數世界排名第九,專利家族(Patent Family)數世界排名第一而與去年相同。就產業的部份,研究者中擁有博士學位者之比例依據產業類型的不同而有所差異,與美國相較,高階人才之實際就業情況未能充分發揮其所學。另一方面,就每一百萬人中有取得博士學位的人數,在各主要國家當中,僅有日本呈現減少的趨勢。
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
關於軟體產品的智慧財產權保護建議近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
簡介美國《營業秘密案件管理的司法指引》2023年7月13日,美國聯邦司法中心(Federal Judicial Center)發布《營業秘密案件管理的司法指引》(Trade Secret Case Management Judicial Guide)。該指引是由美國聯邦司法中心與Berkeley大學合作出版,旨在提供處理聯邦營業秘密訴訟的法官參考,並為訴訟當事人提供營業秘密案件各階段的注意事項。其中特別指出識別營業秘密及證據開示在訴訟中的重要性。 1.在識別營業秘密的部分 《營業秘密案件管理的司法指引》指出在訴訟中,識別應達到「足以與已公開的資訊進行比較」的程度。而識別程度應具備以下兩個要件,包括: (1)使被告了解原告所主張之營業秘密範圍; (2)使被告能確定證據開示項目與本案所涉及之營業秘密間的關聯性。 據此,若原告僅識別其所主張之營業秘密的類別不足以識別其營業秘密。為達到《營業秘密案件管理的司法指南》所要求之識別程度,企業應盤點其擁有的營業秘密並留存產出紀錄,以利後續訴訟中能具體識別其營業秘密。 2.在證據開示的部分 《營業秘密案件管理的司法指引》指出證據開示的範圍會受到不同因素影響,比如各類型的特殊紀錄、個人隱私權是否受到保護等。為了能在證據開示階段取得優勢,企業應與員工簽署協議,明確約定其於機密資訊有外洩之虞時,有權對員工之個人設備等進行調查。 由上述內容可以發現,若要在美國營業秘密案件中取得優勢,建議企業採取識別所擁有的營業秘密、保存產出紀錄、與員工簽署相關協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)