英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。
此次意見徵集主要針對以下四大面向:
1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。
2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。
3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。
4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。
英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。
澳大利亞國庫部(Department of the Treasury)於2023年10月11日發布《支付系統管理法》(Payment Systems(Regulation)Act 1998)修正草案,擬擴張法案適用主體,將Apple Pay、Google Pay等數位支付或提供此項支付服務事業納入規範,其目的在於提升企業的開放性及責任,並關注大型科技企業在其中扮演的角色。 本次修正案中,將修改現行支付系統的定義及適用主體,擴大至提供支付服務平臺企業,將被視為金融機構受到拘束,並授權澳大利亞準備銀行(the Reserve Bank of Australia,下稱RBA)監管數位支付平臺。修正草案內容整理如下: 1.重新定義「支付系統」。現行法定義為「透過任何形式或方式促進貨幣流通的系統」,草案則納入非貨幣(non-monetary,如數位貨幣)及提供便利支付服務的支付平臺系統。 2.擴大「參與者」定義。現行法規中參與者僅包含管理、運作支付系統的企業,草案則擴張至與支付價值鏈(payments value chain)具直接或非直接相關連之所有企業。 3.現行規範中,僅RBA在可能涉及使用者財務安全及公共利益(下述)考量時,有指定支付系統的職權,並有權監管該支付系統,包含決定新參與者的加入、訂定制度內參與者應遵守的標準及指引、對相關爭議問題進行仲裁等。修法後國庫部部長(Minister)將擁有相同權力。規範所稱之「公共利益」,指有助提升財務安全、高效率並具有競爭性,且不會導致金融體系風險增加。 4.提高法案中刑事處罰的罰金金額。現行法規授權RBA訂定支付制度之相關標準及指引,若制度內參與者未依標準或指引行事,RBA會提出要求企業為特定行為或不行為之指示,仍未依循可能會科處澳幣5,500元的罰金(約臺幣11萬3千元),修法後將提高至2倍,惟罰金之處罰權最終仍須法院審判決定。 我國針對電子支付產業有電子支付機構管理條例、金融消費者保護法規範,並要求第三方支付服務業者落實洗錢防制法規定,避免淪為洗錢或地下匯兌工具,未來可持續觀察澳大利亞及其他國家對於支付平臺議題之討論及發展趨勢,作為我國評估相應治理措施及手段參考基礎。
國際海事組織公布自駕船規則制定期程表國際海事組織(International Maritime Organization, IMO)於2018年6月5日第99次海上安全委員會(MSC 99)上,根據日本等國提案,開始進行監理範圍之界定與檢討等相關工作(Regulatory Scoping Exercise, RSE)。於MSC 99之會議上,IMO已暫定自駕船之定義與自動化等級,並於2018年12月3日至12月7日於英國倫敦召開之MSC 100會議上進一步確定RSE框架,公布自駕船規則之制定期程表,具體措施將分為兩階段實行。第一階段預計在2019年9月前釐清可能妨礙自駕船航行,或者有修正和確認必要之IMO規定。第二階段則規劃在2020年5月召開之MSC 102前,檢討為實現自駕船所需修正及制定之IMO規則。此外,MSC 100亦批准2018年5月IMO人為因素、訓練和值班小組委員會(Sub-Committee on Human element, Training and Watchkeeping, HTW)提出之船員「疲勞指引」(Guidelines on Fatigue)修正案,並預計在2019年6月召開之MSC101上,進一步針對燃料油品質所引發之安全問題進行討論。
美國發布關於標準必要專利之政策宣言草案,擬修改核發禁制令態度美國司法部(United States Department of Justice)、美國專利商標局(The United States Patent and Trademark Office)、美國國家標準與技術研究院(National Institute of Standards and Technology)於2021年12月6日共同發布「修改『標準必要專利』授權協議及司法救濟方法之政策宣言草案」(Draft Policy Statement On Licensing Negotiations And Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2021政策宣言草案),並徵集公眾意見,截止時間為2022年2月4日。2021政策宣言草案係在回應2021年7月9日「促進美國經濟體競爭性行政命令」(Executive Order on Promoting Competition in the American Economy)關於檢討2019年「有關『標準必要專利』司法救濟方法之政策宣言」(Policy Statement On Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2019政策宣言)之要求。 2021政策宣言草案揭示了兩大重點: (一)改變SEP被侵害時,對禁制令(injunction)之核發態度 2021政策宣言草案對於「SEP被侵害時,是否核發禁制令」一事,擬回歸適用聯邦最高法院自eBay Inc. v. MercExchange, L.L.C., 547 U.S. 388 (2006)案以來,就禁制令之核發所設立之原則—(1)原告(專利權人)會因專利侵權而遭受無法填補(irreparable)的損害;(2)目前法律上之其他救濟方法,是不足以賠償專利權人所受的損害;(3)衡量專利權人及被授權人可能遭遇之困難,足認有必要進行衡平法上的救濟;(4)核發禁制令不會傷害到任何公共利益。 (二)揭示何謂符合「誠信原則」(good-faith)授權協議的指導原則 (1)雙方應以合宜態度推進授權協議: 以SEP專利權人而言,其應向潛在被授權人告知可能侵害該SEP的行為態樣;其並以「公平、合理及無歧視」(fair, reasonable, and non-discriminatory, FRAND)原則進行授權。 以SEP被授權人而言,其應於知悉以上資訊後,於商業上得被認為合理的時間內,以合宜態度推進該協議,或逕自接受該授權協議,或拒絕原要約而反向提出一合於FRAND原則之新要約(counteroffer)。其他合宜態度例如:就SEP專利權人提出進一步探詢(例如:詢問該SEP目前之專利有效性及有無侵權情形)或請求提供更具體的資訊,或建議目前雙方所遇到的授權上爭議可透過公正第三方解決。 茲有附言者,SEP專利權人在收到以上回應後,亦應「於合理的時間以合宜態度」推進授權協議,例如接受被授權人反向提出之新要約,或為使原授權協議較可被接受,再行提出一合於FRAND原則之授權條款,或回應被授權人想得知更多資訊之請求,或亦提出「可透過公正第三方解決雙方所遇到之授權紛爭」的方案等。 (2)雙方應合宜妥善解決紛爭: 如雙方因授權而生紛爭,建議尋求替代爭議解決方式(alternative dispute resolution);如仍欲透過司法解決,建議雙方就管轄法院達成合意,而非單方面擇定法院而提起訴訟。 此次徵求公眾意見的主要議題如下: (1)2021政策宣言草案是否較可適當平衡SEP專利權人及被授權人之利益? (2)「可申請核發禁制令」一事是否為SEP專利權人願意遵守FRAND原則的重要因素? (3)如何提升SEP授權協議之效率及透明度? (4)2021政策宣言草案所揭示對於SEP授權時之「誠信原則」之指導原則,可否為SEP授權協議建構良好架構? (5)是否有潛在SEP被授權人願意及不願意接受FRAND授權協議之情形? (6)有關單位是否曾經或應就SEP授權協議提供其他參考資訊?
新加坡研發可診斷及殺死癌細胞的奈米載體新加坡國立大學生物工程系科研人員宣佈,他們利用天然聚合物製成可以診斷癌細胞、又可殺死癌細胞的奈米載體。該系助理教授張勇相信,這是全球首次成功利用天然聚合物製成奈米顆粒。 研究甲殼素多年的張勇指出,從螃蟹、蝦殼中提煉出來的甲殼素,在實驗室內製成奈米顆粒的過程中,最困難的就是體積的控制,因為天然聚合物分子一般比較大。但最後仍突破瓶頸,以甲殼素研製出直徑約五十奈米的奈米顆粒,很容就可以被比它大一百倍到四百倍的人體細胞吸收。他說,這種利用天然聚合物製成的奈米顆粒,具備適合生物體、擁有生物功能等特性。 這些奈米顆粒將可用來裝載被稱為人工原子,以細微半導體材料製成的量子點和藥物。由於量子點受光源照射時會發光,不同大小量子點發出不同的光,發光時間可以維持幾個小時。因此把裝載量子點和藥物的奈米顆粒送入讓癌細胞吸收後,就可用光源照射,讓醫生可以辨認哪些是癌細胞,再把癌細胞殺死。目前其已與國大醫學院展開合作,在成肌細胞內注入裝載量子點的奈米顆粒,然後把成肌細胞移植到動物心臟,以進一步了解成肌細胞如何修復心臟組織。