英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。
此次意見徵集主要針對以下四大面向:
1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。
2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。
3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。
4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。
英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。
中國大陸為鼓勵科技研發與創新,陸續訂有《科學技術進步法》(最近一次修正為2007年12月29日,自2008年7月1日施行,以下簡稱科技進步法)及《促進科技成果轉化法》(原為1996年5月15日訂定,最近一次修正已於2015年10月1日起施行),並分別規範智慧財產權相關內容。 其中,關於中國大陸政府補助科技計畫產出之智慧財產權,依科技進步法第20條第1項規定,凡政府補助之科技計畫研發成果,其產出之發明專利權、電腦軟體著作權、積體電路布局權及植物品種權,除涉及國家安全、國家利益或重大社會公共利益者外,由該科技計畫項目承擔者(參照科技進步法第5條第2項規定,可能為組織或個人)依法取得。 而相關科研工作者依前述規定取得成果後,如欲進行運用或轉化,依《促進科技成果轉化法》第2條規定:「本法所稱科技成果轉化,是指為提高生產力水平而對科技成果所進行的後續試驗、開發、應用、推廣直至形成新技術、新工藝、新材料、新產品,發展新產業等活動」,需依該法相關規範辦理,如第12條可透過政府資源、融資、創投等支持科研成果轉化,且其運用方式如第19或45條具相當彈性,並可讓執行人員獲得一定的收入。
美國總統簽署《安全可信通訊網路法》美國總統於2020年3月12日簽署《安全可信通訊網路法》(Secure and Trusted Communications Networks Act),以保護國內的通訊網路以及5G技術之安全。本次立法之目的,主要圍繞三個面向,包括:安全及可靠的網路(Reliable and safe networks)、保護重要利益(Protecting vital interests)以及確保美國未來的安全(Securing America’s future)。 由於國家安全取決於高速與可靠的通訊網路,若使用由無法信賴之供應商建置的電信設施,將威脅到國內網路安全。因此,本法要求聯邦通訊委員會(Federal Communications Commission)應於本法施行一年內於其網站內公布造成國家安全威脅之法人名單,並禁止由名單上之法人建置美國國內關鍵之電信設施。另外,本法亦禁止使用聯邦經費向造成國家安全威脅之法人購買或租借電信設備,並以安全可信之通訊網路補償計畫(Secure and Trusted Communications Networks Reimbursement Program)作為因拆除與更換既有造成國家安全威脅之電信設備之補償機制,聯邦通訊委員會亦將與先進通訊服務供應者(provider of Advanced Communication service)合作,協助該補償計畫之進行。
第三方支付法制問題研析 美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。