日本國會2024年5月10日通過、同月17日公布《重要經濟安全資訊保護及活用法》(重要経済安保情報の保護及び活用に関する法律,以下簡稱經安資訊保護法),建立安全許可(セキュリティ・クリアランス)制度,規範政府指定重要經濟安全資訊(以下簡稱經安資訊)、向業者提供經安資訊之方式,以及可近用經安資訊之人員資格等事項,以保護與重要經濟基礎設施有關,外流可能影響國家及國民安全之重要資訊,並同時促進此類資訊之利用。
根據經安資訊保護法規定,行政機關首長得指定機關業務相關之重要資訊,如與關鍵基礎設施、關鍵原物料相關,外洩可能影響經濟安全之資訊為經安資訊。並得於下列情形,向其他行政機關、立法機關及司法機關、特定民間業者提供經安資訊:
1.其他行政機關:有利用經安資訊之必要時。
2.立法機關及司法機關:提供資訊對經濟安全不會有顯著影響時。
3.特定民間業者:為促進有助於經濟安全保障之行為,必要時得依契約向符合保安基準之業者提供經安資訊。
此外,經安資訊保護法進一步規定近用、處理經安資訊者,須通過適格性評價(適性評価),評價重點包括當事人犯罪紀錄、藥物濫用紀錄、有無精神疾病、有無酗酒、信用狀況等。由於上述內容涉及當事人隱私,故行政機關進行適格性評價前,須取得當事人同意。
本文為「經濟部產業技術司科技專案成果」
馬來西亞政府計劃於2018年推行就業保險計畫(Employment Insurance Scheme,EIS),為受雇人提供一個就業的社會安全網包括失業津貼和培訓支持,計畫內容: 適用範圍:典型受雇工作者。 基金管理機構: 社會安全機構(Social Security Organisation,SOCSO)。 保護內容:為被裁員工提供三個月至六個月的臨時財政援助。例如,在求職津貼下,失業人員可以獲得第一個月的假定月工資的80%,第二個月的50%,第三個月和第四個月的40%,第五個月和第六個月的30%。 保險費用:雇主必須負擔受僱人月薪之0.2%,僱員亦須繳納受僱人月薪之0.2%。繳費將根據員工的工資按固定比例計算。保費繳納之上限為收入4000令吉(Riggit Malaysia,RM)以上者,繳納的最高貢獻額為59.30令吉。 罰則:一萬元以下或兩年以下有期徒刑。 根據國際勞工組織(ILO)一項研究顯示,2011年越南失業人員中只有5%受到失業保險的保護,泰國則為25%。即使在非典型工作者較無問題出現的國家,失業人員的有效覆蓋率通常在40%到50%之間。主要原因在於,失業保險只包括典型工作者,然而亞洲較多數人為非典型工作者。 另一方面,2016年馬來西亞提高最低工資增加雇主負擔,使雇主感受到高額成本的壓力。推行就業保險計畫雇主所需承擔之成本又再次增加。這使得雇主不得不傾向選擇短期契約工作或外包工作。使得雇主減少雇用正式員工,本身待遇與福利居於弱勢的非典型工作者增加,反而使得計畫可以保護範圍縮小加深非典型工作者不平等問題。面對目前全球非典型工作者人數有快速膨脹趨勢,以及雇主捨棄高成本的雇用方式。如何立法保護或改善非典型工作者就業環境,將成為就業保險計畫另一個重要的核心議題。
日本經濟產業省公布創業支援計畫「J-Startup」最新獲選為新創企業之名單日本經濟產業省於2021年10月20日公布第3屆「J-Startup」新創企業獲選名單。本次共選出50間企業,產業所涉及領域包含醫療、數位轉型、能源、太空等。獲選的企業將獲得政府及合作的民間組織所提供之支援,例如協助國內外活動展出、援助研究開發、增加投標機會、商談與其他企業合作等,預期創造出新創企業的成功範例。 「J-Startup」新創企業之選拔分為二階段,第一階段是由具備創業經驗之推薦委員(推薦委員由頂級風險投資人、大企業中與創新有相關之人才、學術單位專家等人員組成)基於新創企業的經營理念、國際性、成長發展性、對於社會議題的應對措施等考量,推薦在全球市場快速發展、具備有領導日本創新潛力之新創企業。第二階段由第三方外部審查委員(律師、學術專家等組成)審查選拔程序後,確定「J-Startup」新創企業名單。 「J-Startup」於2018年6月是由日本經濟產業省、日本貿易振興機構(JETRO)、新能源產業技術綜合開發機構(NEDO)共同創立營運,目的為培養出活躍於全球之新創企業。第1屆「J-Startup」(2018年6月)選拔出92間企業,第2屆(2019年6月)選拔出49間企業,再加上今年度所選拔出之50間企業,目前為止共計有188間新創企業獲選為「J-Startup」(第1屆、第2屆獲選企業中,有3間企業已解散或被併購)。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
日本內閣府就著作權法提出部分條文修正案日本內閣府於2018年年初提出著作權法部分條文修正案,本次修正集中在合理使用之相關規定,並於5月17日經參議院審議通過。文部科學省在修正概要說明中,提及本次修法放寬合理使用範圍,包括下列幾種情事: 為促進大數據所提供之加值服務或技術創新開發等目的,且不致影響著作之市場價值(如圖書檢索加上部分書籍資訊、論文比對檢索顯示部分原始論文內容)。 老師以教學或提供學生預、複習為目的,利用他人著作所製作之教材,以網路傳輸之方式,上傳後供學生下載使用。 為提供視障者閱讀或因肢體殘障而無法翻閱書籍之人,而將書籍文字以錄音方式呈現。 將美術館或博物館之展出品,製作成可使用於平板電腦之數位檔案,並用於展館導覽上。 上述情形均無須得著作權人之同意。日本政府期待透過本次修法, 在教育推動、便利身障人士及美術館之數位典藏利用等相關數據資訊產業發展上,有效緩解可能產生侵害著作權之問題,故此次條文修正案及後續相關立法動態值得密切注意。