為應對日益嚴峻的國際情勢,並避免研究能力下降、生態系進展緩慢對經濟、社會發展造成衝擊,日本內閣府於2024年6月4日發布「綜合創新戰略2024」(統合イノベーション戦略2024),提出三大強化措施與三大發展主軸,綜整未來科技與創新的重要發展方向。具體內容整理如下:
1.強化措施
(1)關鍵技術綜合戰略
開發核心技術,在各戰略領域如人工智慧、機器人、物聯網等,透過產官學界合作推進技術融合與研究開發、推動人才培育,並促進新創發展。
(2)加強國際合作
從全球視角積極運用資源進行策略性協作,並以促進開發利用、確保安全性為主要目標,主導、參與重要技術相關之國際規則制定。
(3)強化人工智慧領域競爭力並確保安全性
包含創新研發人工智慧之應用,及利用人工智慧加速創新速度等。
2.發展主軸
(1)推進先進科技戰略
針對各重要領域如人工智慧、核融合能源、量子科技、生物科學、材料科學、半導體與通訊技術(6G)推展研究;確保大學與研究機構之研究安全性與倫理,並為設立智庫強化研究機能預做準備;同時綜合運用各領域的知識創造價值,為整體社會提供自動化、省力化、防災減災之科學技術。
(2)研究能力與人才培育
透過補助優秀大學與研究費用、扶植區域核心及具有特色的研究型大學、強化國家研究設施並促進設施間之合作性發展研究基礎;以及推動開放政府資助研究之資料與學術論文。
(3)營造創新生態系
透過SBIR計畫(Small Business Innovation Research,小型企業創新研發計畫)補助,並促進新創企業之政府採購;藉由產官學合作推展創新;以及擴大政府與民間研發投資規模,促進人才、技術、資金在大企業與新創公司間流動等。
日本政府認為,核融合能源與量子科技等關鍵技術將為新產業發展的開端,本戰略亦將成為未來日本新一期科學技術與創新基本計畫(科学技術・イノベーション基本計画)開展之基礎。我國於半導體、量子科技等關鍵科技發展皆緊跟國際腳步,因此相關戰略措施後續之推動與落實,亦值得我國持續關注、參考。
《確保關鍵礦產安全可靠供應的聯邦戰略》(A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals),為美國商務部於2019年6月4日發布的一項國家層級礦產行動計劃,制定依據為美國總統於2017年12月20日發布的13817號行政命令,戰略目標是強化美國製造業與國防工業及礦產供應鏈彈性,推進研究開發工作,減少美國對中國大陸等外國實體的關鍵礦產資源依賴。 美國商務部表示,確保關鍵礦產供應穩定及供應鏈彈性,對於美國經濟繁榮與國防安全至關重要,過去美國過分依賴外國關鍵礦產資源及供應鏈,導致經濟和軍事出現戰略性弱點。據統計共有35種與美國經濟與國家安全相關的礦產品,包括鈾、鈦和稀土元素,為智慧手機、飛機、電腦和GPS導航系統及風力發動機、節能照明與混合動力汽車電池等綠色科技產品的必要組成。35種關鍵礦產中有31種選擇進口,其中更有14種關鍵礦產是完全依賴國外進口。 《確保關鍵礦產安全可靠供應的聯邦戰略》提出6項行動綱領包括:(1)推動關鍵礦產供應鏈的轉型研究、開發與部署;(2)加強美國關鍵礦產供應鏈和國防工業基地;(3)強化與關鍵礦產相關的國際貿易合作;(4)提升對國內關鍵礦產資源知識;(5)提升在美國聯邦土地上獲得關鍵礦產資源的機會,並簡化授權開採的審查程序;(6)增加美國關鍵礦產資源勞動力等。
美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。 以下說明數位證據系統的重點: 1.數位證據系統適用的案件範圍 適用於「小額訴訟當事人於聽證會前之證據開示程序」。 關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。 依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。 2.數位證據系統可上傳的數位證據類型 訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。 當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。 經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。 該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。 3.數位證據系統的檔案權限控管之設定 (1)上傳、編輯、刪除權限 訴訟當事人可上傳數位證據。 於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。 (2)線上瀏覽權限 上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。 於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。 (3)下載權限 訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。 4.證據於數位證據系統的保存期限 於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。 美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。 上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐洲汽車供應商協會發表關於標準必要專利之政策指南,以期有關單位能給予汽車產業更明確的指示歐洲汽車供應商協會(European Association of Automotive Suppliers,俗以CLEPA簡稱之)於2023年3月7日發表〈關於標準必要專利之政策指南—一個可因應汽車產業數位轉型現象的歐盟專利規則〉(Standard Essential Patents Policy guidelines—For an EU patent regulation that adapts to the digital transformation in the mobility ecosystem),以期有關單位能給予汽車產業更明確的指示,舉凡:SEP專利權人可向何人為授權、「合於FRAND原則之授權條款」應如何被認定等。 CLEPA提及,由於在一技術領域中有SEP時,其他的技術無「迴避設計」(design-around)可能性,而必得實施該被選為標準之技術,故在該技術領域中,無其他技術可與「受該SEP保護」的技術相抗衡;是以該SEP的價值必須被審慎且精確評估。此外,CLEPA指出,由於汽車產業會投資、研發、銷售有助於未來「移動性」(mobility)發展的下世代產品,故此產業與智慧財產權議題有高關聯性(例如:此產業每年會申請超過39,000筆專利權),應予其在SEP議題上有足夠的明確性(certainty)及可預測性(predictability),使其在「投資於廣泛實施標準的『新技術』」上,更可依循。而創建一個「利益平衡」(balanced)的環境,將有助於授權雙方進行合於「誠信原則」(good-faith)的授權協議。 CLEPA為以上目的,提出五點建議: (1)應有一「歐盟層級」的立法 一個「歐盟層級」(EU-level)的法架構體系是較足以為SEP專利權人及專利實施者間,提供較「利益平衡」的環境,且較可抑制不公平的SEP授權行為。 (2)「供應鏈中任一層級,均可得授權原則」 凡任何欲得授權者,不論其位於供應鏈中何層級,均應予其有「在符合FRAND原則」下,被授權的機會。又,由於一技術之所以會成為「標準」,係因被「商討」(coordination)而出,倒不一定是因其在市場競爭上,真的有大勝於其他技術的優勢,故授權權利金應僅可反映該技術本身的價值,而不可將「因標準化而可帶來的其他廣大利益」摻入。 (3)對於SEP授權條款應有明確指示 政策制定者及各「標準制定組織」(Standard Setting Organization, SSO)應對「何謂合於FRAND原則之授權條款」提供指南;此外,也應提出就一SEP及其有被納入的「專利組合」(portfolios)的評價方法。 (4)供應鏈中的授權狀況應明瞭 專利實施者應清楚明瞭其是否應獲授權,或其上游元組件供應商是否已獲授權。 (5)應有完整的法體制 政策制定者應制定法體制或應提供關於法體制的指南,以避免SEP專利權人不當申請「禁制令」(injunction),以強使授權協議之可被達成。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).