紐西蘭內政部於2024年7月25日發布新版洗錢防制與打擊資助恐怖主義(Anti-Money Laundering and Countering Financing of Terrorism, 以下均簡稱AML/ CFT)指引(下稱指引),指導虛擬資產服務提供者(virtual asset service providers, 下稱VASPs)遵循虛擬資產交易行為準則與注意事項。該國有關AML/ CFT之規定係以多項規則與行為指引構成,且應技術、產業與國際標準之變革持續調整既有框架。本次指引更新係為配合AML/ CFT法(AML/ CFT Act 2009)及其規則之修正與生效,重新規範VASPs對於虛擬資產轉帳再定義後義務。以下針對法規變革脈絡簡要說明:
AML/ CFT規則(AML/ CFT (Definitions) Regulations 2011)將虛擬資產定義為具有價值的數位貨幣,可用於交易、達成支付或投資目的;雖其不等同於債券、股票與衍生性金融產品或數位法定貨幣,VASPs仍為AML/ CFT法定義之報告實體,負有對客戶進行盡職調查、報告特定業務活動與交易的義務。
自2024年6月起,AML/ CFT規則全面納管虛擬資產轉帳,範圍由法定貨幣與虛擬資產間的流動,擴及虛擬資產間的交易,包含以VASPs作為中介機構之交易情形。此外,基於虛擬資產跨境的特性,所有轉帳皆被推定為國際轉帳,除非VASPs確定該筆交易發生紐西蘭境內。AML/ CFT規則對虛擬資產平臺交易之監管密度係以1,000紐幣為閾值,VASPs須對超過此金額的國際轉帳,向金融情報中心(Financial Intelligence Unit, FIU)提送交易報告;而對於臨時性交易則應盡職調查客戶。
為降低虛擬資產被用於非法活動之風險,防制洗錢金融行動工作組織(FATF)倡議於國際施行一致之監管標準,避免因各國法規監管差異造成防堵漏洞。紐西蘭政府藉改造現行金融法規將相關產業逐步納入監管,並提供指引說明及闡釋法規內容,調適金融科技發展與現有制度規範落差。此次AML/ CFT規則與VASPs指引之修正,將有助於紐西蘭更符合國際組織建議之洗錢防制與反資助恐怖活動監管標準。
2010年,蘋果(Apple Inc.)與法商Hachette、美商HarperCollins、美商Simon & Schuster、英商Penguin與德商Holtzbrinck/Macmillan等五家主要出版商訂定協議,改變電子書過往在市場上的銷售模式。過去電子書係由零售商(通常是網路書店)自行訂定銷售價格,而今蘋果與五家出版商透過協議,改由出版商決定電子書在網路書店的銷售價。 歐盟執委會於2011年3月對此展開反競爭(anti-competition)調查,認為這五家書商聯合蘋果公司限制零售書商定價的行為有違反競爭法之虞。根據歐盟運作條約(Treaty on the Functioning of the European Union, TFEU))第101條規定,事業間協議與一致性行為足以影響歐體會員國間交易,且以妨礙、限制或扭曲歐體共同市場競爭為效果或目的者,與共同市場不相容,應予禁止。 2012年9月,除Penguin外,其中四家出版商皆提出和解方案,承諾將終止與蘋果簽訂的代理協議,不再干涉電子書零售商調整電子書零售價格,此外,並同意未來五年內排除「最惠國(Most-Favoured-Nation, MFN)」條款的適用,該條款規定出版商與其他電子書銷售商如亞馬遜的訂價不得低於與蘋果的訂價。排除最惠國條款的適用意味著,未來出版商和零售商協議的電子書價格將能低於蘋果訂價。 英商Penguin日前與歐盟執委會達成協議,決定終止與蘋果公司關於電子書定價的契約,其承諾條件如下: 一、Penguin公司將終止和零售書商間的代理契約。 二、未來兩年內零售書商可自訂電子書價格與折扣,包含Penguin公司出版的書籍。 三、Penguin公司和零售書商的契約也將適用禁止價格最惠國條款,期限5年。 歐盟執委會接受Penguin公司所提出之承諾,並認為此舉將有助於恢復市場的有利競爭環境。本案終能落幕。
歐盟通過反脅迫規則,將針對他國的經濟脅迫手段採取反制措施歐盟理事會(European Council)表示已與歐盟執委會(European Commission,以下簡稱「執委會」)、議會(European Parliament)於2023年11月22日完成《保護歐盟及其成員國免受第三國經濟脅迫規則》(Regulation on the protection of the Union and its Member States from economic coercion by third countries,以下簡稱「反脅迫規則」)之立法流程,並將於2023年12月27日正式施行生效。 該法起源於中國大陸於2021年為抗議立陶宛(Lithuania)同意我國政府以「臺灣」名義在其首都維爾紐斯(Vilnius)設立代表處,停止輸入多項產品,導致立陶宛對中貿易額大幅降低。歐盟為避免特定國家持續利用此種經濟脅迫手段影響歐盟交易市場與會員國之主權,決定立法採行反制措施,並於2021年之貿易政策回顧(2021 Trade Policy Review)公布《反脅迫規則》之立法框架。 根據《反脅迫規則》,執委會得根據會員國、歐盟議會及其他經濟聯盟所提供之資訊進行職權(ex officio)調查;亦可依照受脅迫之會員國或企業的請求進行調查。在調查階段,執委會會在4個月內判斷特定國家之行為是否確實造成經濟脅迫,若確實存在,將進一步評估其對歐盟帶來之影響。調查完成後,若他國政府確實對歐盟成員國或企業實施經濟脅迫手段,執委會將提交報告與理事會進行決議,通過後,執委會將先採行不干涉措施(non-interventionist measures),與實施經濟脅迫手段之國家進行協商,並要求賠償因經濟脅迫而產生的損害。若採行不干涉措施後仍無改善,執委會得考慮採行干涉措施(interventionist measures),包含但不限於限制特定企業進入歐盟市場與投標政府採購案;終止對特定國家的關稅優惠,並課予額外之關稅等,以阻止該特定國家繼續干擾歐盟經濟體。
美國眾議院提出「深度偽造究責法案」隨著人工智慧(AI)視覺處理技術愈發進步,圖片及影像的篡改也更加普遍,甚至使人難以分辨其真偽,例如一款應用程式(App)-DeepNude便是運用此技術,將人穿著衣服的照片改作為裸體圖像;此種AI技術因對於社會及被偽造之當事人權益影響重大,進而引起美國立法者的極度重視。 日前維吉尼亞州為了遏止如DeepNude此類的應用程式,便於該州之《復仇式色情法》(Revenge porn law),擴大復仇式色情的涵蓋範圍,使其包括利用機器學習技術偽造他人照片或影像等深度偽造(Deepfake)行為。 但該深度偽造技術之應用,實際上並不僅侷限於情色領域,故美國紐約州眾議員伊薇特.克拉克(Yvette Clarke)於本年度(2019年)6月即提出了《深度偽造究責法案》(Defending Each and Every Person from False Appearances by Keeping Exploitation Subject to Accountability Act of 2019., DEEP FAKES Accountability Act.)草案,本草案令人關注之處除配合現今科技發展特性為規定外,另針對實務上曾衍生的爭議問題,特別將外國勢力或其代理人(foreign power or an agent thereof)介入美國國內政治行為,如意圖影響美國國內公共政策辯論(domestic public policy debate)、選舉或其他不得合法從事的行為等納入規範。 依該草案之內容,其所規範者包含視聽紀錄、視覺紀錄及錄音紀錄;意即任何人使用任何技術或設備製作假冒他人名義(false personation)的紀錄,並於網路或其他知識傳播管道發布者,應有浮水印、口頭陳述或是於文本中有簡要說明等揭露,以使他人得清楚知悉該紀錄並非真實,如行為人有違反該揭露規定並利用深度偽造1.意圖羞辱或騷擾(包含性內容);2.意圖造成暴力、身體傷害、煽動暴亂、外交衝突或干預選舉;3.詐欺犯罪等,將可處5年以下有期徒刑,或科或併科罰金。另若行為人修改或刪除他人揭露之資訊而有上述意圖或犯罪行為者,亦可處以同等罰責。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。