為確認產品供應鏈與物流鏈的真實來源、打擊仿冒品、提升永續資訊透明度以接軌歐盟政策,歐盟智慧財產局(下稱EUIPO)自2023年5月啟動區塊鏈物流認證計畫(下稱EBSI-ELSA),採難以竄改、公開透明的區塊鏈服務基礎設施(European Blockchain Services Infrastructure,下稱EBSI),透過數位簽章(digital signature)、時戳追溯與驗證歐盟進口產品的來源是否為智慧財產權利人。EUIPO 於2024年6月24日宣布EBSI-ELSA已上線8成基礎設施。為加速推動計畫,於2024年9月至11月間,EUIPO以產品鏈的智財權利人(例如鞋類與/或服裝、電氣設備、手錶、醫療設備與/或藥品、香水與/或化妝品、汽車零件與玩具產業別之產品智財權利人)為試點,並將於2024年11月前發布試點最終報告。
透過試點,EUIPO致力於:
(1)測試、評估於真實世界之製造與分銷系統中應用數位簽章及物流模組的情況,以作為智財權利人之企業資源規劃(ERP)的一部分。
(2)於產品歷程,測試、評估數位裝運契約(digital shipment contract)及產品數位孿生(Digital Twin)之資訊的接觸權限與品質(access to and quality of information)。如海關人員預計於產品抵運前(pre-arrival)、通關階段(inspection phases)確認產品之真實性。
(3)提供產品生命週期應用EBSI-ELSA之試點最終報告,包含實施過程、結果等相關資料。
EBSI-ELSA計畫認為其符合歐盟之數位政策與循環經濟目標,旨於採取區塊鏈技術向供應商、消費者、海關、市場監管機構等多方揭露更多的產品溯源資料,提升產品透明度,銜接歐盟之數位產品護照(Digital Product Passport, DPP)政策,該政策目的係以數位互通方式揭露歐洲市場之產品生命週期的資訊,如產品材料來源、製程、物流、碳足跡等永續資訊,強化產業的可追溯性、循環性(circularity)及透明度,以協助供應鏈利害關係人、消費者、投資者做出可持續的選擇。而負責執行歐盟資料經濟與網路安全相關政策之歐盟執委會資通訊網絡暨科技總署(DG Connect)於2024年5月所發布之「數位產品護照:基於區塊鏈的看法」報告,亦指出「為確保區塊鏈系統互通性,其IOTA區塊鏈技術框架應能與歐盟內部市場電子交易之電子身分認證及信賴服務規章(EIDAS)及EBSI標準完全接軌(fully align)」。
如我國企業欲強化既有的產品生命週期資料管理機制,可參考資策會科法所創智中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從數位資料的生成、保護與維護出發,再延伸至存證資訊之取得、維護與驗證之流程化管理機制,協助產業循序增進資料的可追溯性。
本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)與加拿大首席選舉官(Chief Electoral Officer of Canada, CEO)於2019年4月1日聯合針對聯邦政黨發布個人資料保護管理之指引(Guidance for federal political parties on protecting personal information)。目前加拿大選舉法(Canada Elections Act, CEA)僅概括規範政黨須制定隱私政策,以保護選民之個人資料,惟其卻未有具體法規制度落實。對此加拿大隱私專員辦公室認為政黨必須提出具體隱私政策來履行其法律義務。 現行加拿大選舉法規範聯邦政黨必須於其網站上公布隱私政策,並提交給加拿大選務局(Elections Canada)。若其隱私政策變更,必須通知首席選舉官,且即時更新網站上隱私政策版本。加拿大聯邦各政黨須於2019年7月1日前完成相關規範,為具體實踐政黨隱私保護制度,加拿大隱私專員辦公室提出幾點隱私政策之必要條件: 一、 聲明蒐集個人資料之類型與如何蒐集個人資料? 二、 如何保護其蒐集之個人資料? 三、 說明如何利用個人資料?是否會將個人資料給予第三方? 四、 針對個人資料蒐集、利用之人員如何培訓?內部控管機制為何? 五、 蒐集分析之資料為何?是否有利用cookie或相關應用程式蒐集? 六、 設置處理個資隱私疑慮專責人員 除此之外,該辦公室更建議參採國際隱私保護作為,著重公平資訊原則,政黨於個資隱私保護上須有其問責制、目的明確性、透明化、限制性蒐集,且未經當事人明確同意不得蒐集政治觀點、宗教或種族等敏感性個資,並應建置保障性措施與合規性管理機制。
歐盟執委會公布「行動健康醫療(mHealth)綠皮書徵詢意見書」為強化推動歐盟行動健康醫療之發展,歐盟執委會於2014年4月10日以綠皮書之形式,向大眾(包括產業、國家與地方機關、專業醫療機構、研究機構、非政府組織、病患協會等)提出mHealth行動健康醫療徵詢意見,在2015年1月12日時公布「行動健康醫療(mHealth)綠皮書徵詢意見書」(摘要版)(Summary report on the public consultation on the green paper on mobile health)。 此份徵詢意見書有十個主題,包含:資料保護、法制架構、病人安全與資訊透明、行動健康在醫療體系中之定位及平等接取、互操作性(interoperability)、給付模式(reimbursement models)責任、研發與創新 、國際合作和網路業者參與市場。從報告顯示,大多數的人認為資料保護是最重要的,特別是建立用戶信任的保護隱私與安全之工具(例如資料加密(data encryption)與認證機制(authentication mechanisms)),並且認為強化資料保護法制。 再者,有將近一半的被徵詢人要求透過認證方案或資格標籤等方法做更進一步的病人保護與資料透明。第三,行動醫療主要是透過網路進行,然而有網路業者表示,因為目前仍缺少明確的管制架構、互操作性以及共通品質標準,所以對業者而言是難以進入市場的。第四,也有許多被徵詢人認為行動醫療的性能和安全要求,應透過立法、指導原則或自我管制(self-regulation)管理。另外也有提出應確保行動醫療與電子健康病歷(Electronic Health Records , EHRs)之互操作性,以便於照護延續性與用於研究目的上。 經過此次徵詢,歐盟執委會對於推動行動健康醫療發展,規劃將在2015年間將會與相關業者討論政策措施,包括立法、自我或共同管制(self- or co-regulation)、政策指導原則等。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」