韓國科學及資通訊部(Ministry of Science and ICT, MSIT)於2024年8月26日發布第一次國家戰略技術發展計畫「韓國科學技術主權藍圖」(Blueprint for National S&T Sovereignty)(下稱科技主權藍圖),以促進國家戰略技術(national strategic technology)之發展。
韓國於2022年10月發表〈國家戰略技術培育計畫〉(National Strategic Technology Nurture Plan),選定12個國家戰略技術。本次發布之科技主權藍圖,旨在為國家戰略技術提供中長期之支援政策,主要政策與預期效果如下:
1. 支持國家戰略技術商業化:MSIT將在5年內投資30兆韓元(約7200億台幣)於國家戰略技術之研發,並推出「顛覆性差距特殊上市程序」(super-gap special listing procedure),為具顛覆性之新技術提供融資、租稅優惠等支援,加速其商業化。
2. 增強韌性:韓國將加強與戰略夥伴之合作,觀察國際趨勢,定期更新國家戰略技術清單,以利其對國家戰略技術保持良好的應變能力。另一方面,韓國希望保持半導體記憶體(semiconductor memory)、蓄電池與顯示器技術之領先,並積極發展人工智慧半導體、尖端生物技術與量子技術等三大顛覆性領域,以期在國際上建立韓國主導之戰略技術標準化體系。
3. 建立任務導向的研發體系:MSIT將建立任務和目標績效管理體系,並搭建創新平台,鼓勵戰略技術之研發,目標為創造15家以上的戰略技術獨角獸公司(unicorn start-up),以引領韓國未來戰略技術之發展。
本文為「經濟部產業技術司科技專案成果」
自從1994年第一種基因改造(Genetically Modified , GM)農產品~番茄在美國上市後,越來越多的GM農產品進入了我們的生活,使得大家越來越注重食用的安全性。行政院農業委員會農業藥物毒物試驗所開發的基因改造農產品安全測試系統於11月正式上路,日後台灣自行研發的GM農產品上市前,可以送到藥毒所檢驗,以確定對人體無害。 國際間對於GM農產品安全性爭議主要有兩個層面:生物安全性(作為食品之安全性)與生態環境安全(對環境的衝擊評估)。整體而言,GM農產品的食用安全評估以過敏性測試最為重要,也就是針對轉殖的DNA基因,測試其外源表現物質(蛋白質)對人體的影響,換句話說:蛋白質是較容易讓人體產生過敏的來源。 藥毒所開發的過敏反應和安全性測試系統,其針對GM農產品的評估方法有三:序列比對(和已知過敏原比對)、消化穩定性(採用人工胃液和腸液分解測試)、動物實驗模式(讓大白鼠直接食用)。相信這套安全測試系統的上路,可讓民眾食用台灣自行研發的GM農產品較為安心。
歐洲五大電信公司聯合呼籲歐盟建立Open RAN創新生態系統歐洲五大電信公司──德國電信(Deutsche Telekom)、法國Orange電信、義大利電信(Telecom Italia)、西班牙電信(Telefonica)與英國沃達豐電信(Vodafone)於2021年11月18日聯合發表聲明,呼籲歐盟執委會與成員國加速開放「開放式無線存取網路」(Open Radio Access Network, Open RAN)的技術應用,並提出「為歐洲建立Open RAN生態系統」(Building an Open RAN Ecosystem for Europe)研究報告。 本報告對Open RAN價值鏈和當前供應商進行分析,發現許多歐洲供應商正處於發展初期,未獲得Open RAN商業契約,且在Open RAN關鍵服務的部分類別(如雲端軟體)中,尚未有歐洲供應商。甚至綜觀Open RAN的各項關鍵服務分布,歐洲供應商僅有少數等。因此,本報告強調歐洲需迫切將Open RAN作為戰略重點,並提出以下五點建議: (一)歐盟的政策制定者應積極推動發展創新、開放及可互通之電信生態系統,並期望歐盟執委會、成員國與產業利害關係人,透過對話與討論,促使全歐洲對Open RAN生態系統之建立產生共識。 (二)執委會應成立下世代通訊基礎設施聯盟,如同過去其為雲端與半導體設立聯盟,作為推動該產業的關鍵力量。此外,為迎接Open RAN新興技術,應提倡如歐盟共同利益重要計畫(Important Projects of Common European Interest, IPCEI)的微電子和通訊技術、5G產業協會與共同承諾推動智慧網路服務多國計畫。 (三)政策制定者應降低歐盟供應商和新創企業之投資風險,並對歐洲未來具有戰略意義的技術領域,以資金與租稅等激勵措施,支持歐洲供應商合作。如由歐盟執委會和各國政府為財團提供資金,使歐洲公司建立穩固的合作關係,並成為Open RAN價值鏈中茁壯成長的供應商。 (四)O-RAN聯盟(O-RAN ALLIANCE)與第三代合作夥伴計劃(3rd Generation Partnership Project, 3GPP)及歐洲電信標準協會(European Telecommunications Standards Institute, ETSI)正式合作,支持採用O-RAN規範作為ETSI的自願性標準,可透過快速程序對現有3GPP規範進行補充。透過促進全球統一的Open RAN標準,確保開放性網路設備的互通性,如:全歐認證的品質與互通性,建立生態系統部署者的信心。 (五)歐盟應與國際合作,促進安全、多樣化及可持續的資訊與通訊技術供應鏈,如:利用七大工業國組織(Group of Seven, G7)、美歐貿易和技術委員會(EU-US Trade and Technology Council)與日歐資通訊技術對話(Japan-EU ICT Dialogue)促進發展和部署開放且可互通的網路架構。
美國知名嘻哈歌手Dr. Dre對婦產科醫生的商標註冊提出異議遭駁回2015年美國賓州的一位婦產科醫生Draion M Burch(以下簡稱Burch)申請註冊「Dr. Drai」商標在國際商品服務類別41(教育及娛樂服務)及44(醫療諮詢服務)以行銷自身的有聲書籍及研討課程。美國知名的嘻哈歌手Dr. Dre認為,該商標與自身的「Dr. Dre」【已註冊國際商品服務類別9(系列音樂錄製)、16(海報、美術印刷及貼紙)、25(T恤、長袖衫、帽子)、41(由音樂藝術家及創作者提供之娛樂服務)】雖拼法不同但讀音相同,會引起消費者的混淆,因而向商標審理暨訴願委員會(Trademark Trail and Appeal Board, TTAB,下稱委員會)提出異議。 委員會認為,雖然「Dr. Dre」與「Dr. Drai」兩者類似,然而Dr. Dre無法證明消費者會因而被混淆、誤導,進而去購買Dr. Drai的商品。該意見書更指出,由於Burch醫生的演講費用是5000元美金,比起購買一般物品,消費者在購買Burch醫生的書籍或演講門票時會付出「較高的注意程度」。Burch醫生也辯稱,消費者不太可能會混淆這兩個商標,因為「Dr. Dre並非醫生,也沒有資格提供任何醫療服務或銷售醫藥、保健產品。」他更證稱從未想要利用Dr. Dre的名聲謀取利益,因Dr. Dre創作的歌詞顯示出其對某些族群的歧視,若消費者將他與Dr. Dre聯想,只會認為他是一位不好的醫生。 基於上述理由,委員會最後駁回歌手Dr. Dre的異議。Dr. Dre的律師James Weinberger目前對此案拒絕做出評論,也不願透漏是否會再提出上訴。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。