日本經濟產業省下之貿易經濟安全保障局,於2024年9月公布「建立強化技術管理之新官民對話框架」文件(技術管理強化のための新たな官民対話スキームの構築について),指出在目前複雜的地緣政治情勢下,企業難以獨自進行技術管理,故須透過強化官民對話,讓雙方可共享現況及問題,俾利政府檢討管理措施。
經產省為強化技術管理,擬修正依《外匯與外國貿易法》(外国為替及び外国貿易法,以下簡稱外為法)授權制定之省令及告示,要求業者於技轉「重要技術」時,須依外為法第55條第8項進行事前報告,以利後續透過官民對話達成共識。經產省強調,上述規定目的不是禁止技術移轉,而是進行適當之技術管理,故原則希望能透過官民對話來解決問題。惟若在雙方對話後,經產省認為有技術外流之虞時,仍會要求業者申請許可。
根據經產省於2024年9月6日公布之省令及告示修正案,以下4大領域10項技術被列為「重要技術」:
1.電子元件:積層陶瓷電容(積層セラミックコンデンサ(MLCC))、SAW和BAW濾波器(SAW及びBAWフィルタ)、電解銅箔、介電質薄膜(誘電体フィルム)、鈦酸鋇粉末(チタン酸バリウム粉体)。
2.纖維:碳纖維(炭素繊維)、碳化矽纖維(炭化ケイ素繊維)。
3.半導體:光阻劑(フォトレジスト)、非鐵金屬材料(非鉄金属ターゲット材)。
4.電子顯微鏡:掃描式電子顯微鏡(走査型電子顕微鏡(SEM))、穿透式電子顯微鏡(透過型電子顕微鏡(TEM))。
隨著NFT持續延燒,韓國不少藝術家選擇透過NFT之模式進行數位交易。然2021年11月,韓國金融監督委員會認為NFT不屬於數位資產,也不承認NFT相關之數位交易。根據韓國聯合新聞通訊社(YNA)2022年7月14日報導,韓國科學技術情報通信部( MSIT)與韓國網路振興院(KISA)宣布成立元宇宙/NFT安全委員會,以檢查元宇宙和NFT等虛擬融合經濟的傳播所產生的新安全問題,並強化產業合作。 該委員會由該國元宇宙和NFT相關的平台公司、安全產業、合作社組成,旨在振興安全可靠的虛擬融合經濟產業,分析和共享網絡威脅、安全技術及損失案例,並針對各種安全問題尋求主動響應和解決方案。 虛擬數位資產本身存有爭議,加上公鏈Terra的崩盤造成韓國28萬名投資人遭受巨大損失,使作為主管機關的韓國金融委員會(FSC)和金融監督院(FSS)壓力倍增,宣布制定《數位資產基本法》大綱框架,目前此法將加密資產定義為非法幣資產、非金融商品資產之「第三類資產」,並強調未來將有加密資產委員會進行專門管理。韓國擬積極加強監管虛擬數位資產,擬徹底管理加密投資風險,並加強監管杜絕非法吸金與場外交易。《數位資產基本法》預計於2023年上路。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
印第安那州對違反個資外洩通報義務之保險公司提起訴訟印第安那州首席檢察官Greg Zoeller對Wellpoint保險公司提起訴訟標的金額30萬美元之損害賠償訴訟,主張該公司因遲延向首席檢察署及超過32,000萬因個人資料外洩影響所及之客戶通報個資外洩事件,而違反印第安那州通報法〈Indiana notification laws〉中通報及揭露規定〈Chapter 3. Disclosure and Notification Requirements及Chapter 3. Disclosure and Notification Requirements〉,依法各得請求15萬美元罰金,此為印第安那州提起之首件違反通報義務之訴訟。 前述法令於2009年7月生效,新法規定個人資料擁有者〈database owners〉負有「通報義務」,其於個資外洩事件發生後,必須在「合理期間」〈within a reasonable period of time〉內,對「潛在受影響之個人」〈both the individuals potentially affected by a data breach〉,以及檢察署通報,惟經調查,該公司未於合理時間內通報前述應通報之對象。 經查該公司於今〈2010〉年2、3月間即發現客戶個資外洩,卻6月18日始通知客戶,檢察署展開調查後認定其遲延通報無正當理由,故代表印地安那州向其提起民事賠償。 前述所指外洩之個人資料包括:提出投保申請者之個人資料內容,諸如「社會安全碼」〈social security number〉、「財務資訊」〈financial information〉、「健康記錄」〈health records〉,因該保險公司網頁之照管者〈siteminder〉未能實行安全防護,使盜竊身分之人〈identity thief〉得以改變統一資源定址器〈URL〉而窺見申請者的個人資訊。 除印第安那州客戶外,該保險公司因客戶個資外洩亦使其他州投保申請者資訊曝露,包括:美國加州、科羅拉多、康乃迪克、肯特基、密蘇里、內華達、新罕布夏、俄亥俄及威思康辛等九個州,約有47萬個客戶可能因此受影響。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。 無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。 美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。 截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。 人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。